Machine Learning Approaches and Neuroimaging in Cognitive Functions of the Human Brain: A Review

Conference paper
Part of the Advances in Intelligent Systems and Computing book series (AISC, volume 1201)


Brain science is that sphere of knowledge on the frontline of modern reality wherefrom the accuracy of diagnoses and speed of decision making depends on human mental health. Machine Learning and Deep Learning are the contemporary methodologies and algorithms that can combine a huge amount of complex data in the coherent structure and help scientists solve brain disorders. This paper reviews different Machine Learning algorithms that investigate data patterns and trends, collected from the human brain using several neuroimaging techniques.


Functional near-infrared spectroscopy Deep Learning Cognitive functions Machine Learning Neuroimaging 


  1. 1.
    Jiang, F., Jiang, Y., Zhi, H., Dong, Yi., Li, H., Ma, S., Wang, Y., Dong, Q., Shen, H., Wang, Y.: Artificial intelligence in healthcare: past, present, and future. Stroke Vasc. Neurol. 2(4), 230–243 (2017)Google Scholar
  2. 2.
    Zhu, G., Jiang, B., Tong, L., Xie, Y., Zaharchuk, G., Wintermark, M.: Applications of deep learning to neuro-imaging techniques. Frontiers Neurol. 10, 869 (2019)CrossRefGoogle Scholar
  3. 3.
    McCarthy, J.: What is Artificial Intelligence? (2017).
  4. 4.
    Mazurowski, M.A., Buda, M., Saha, A., Bashir, M.R.: Deep learning in radiology: an overview of the concepts and a survey of the state of the art. J. Mag. Reson. Imaging 49(4), 1–27 (2018)Google Scholar
  5. 5.
    Kamal, H., Lopez, V., Sheth, S.A.: Machine learning in acute ischemic stroke neuroimaging. Frontiers Neurol. 9, 945 (2018)CrossRefGoogle Scholar
  6. 6.
    Cortes, C., Vapnik, V.: Support-Vector Networks. Mach. Learn. 20, 273–297 (1995)zbMATHGoogle Scholar
  7. 7.
    Rehme, A.K., Volz, L.J., Feis, D.L., Bomilcar-Focke, I., Liebig, T., Eickhoff, S.B., Fink, G.R., Grefkes, C.: Identifying neuroimaging markers of motor disability in acute stroke by machine learning techniques. Cereb. Cortex 25, 3046–3056 (2015)CrossRefGoogle Scholar
  8. 8.
    Haller, S., Badoud, S., Nguyen, D., Garibotto, V., Lovblad, K.O., Burkhard, P.R.: Individual detection of patients with parkinson disease using support vector machine analysis of diffusion tensor imaging data: initial results. Am. J. Neuroradiol. 33(11), 2123–2128 (2012)CrossRefGoogle Scholar
  9. 9.
    Li, R., Rui, G., Chen, W., Li, S., Schulz, P.E., Zhang, Y.: Early detection of Alzheimer’s disease using non-invasive near-infrared spectroscopy. Frontiers Aging Neurosci. 10, 366 (2018)CrossRefGoogle Scholar
  10. 10.
    Quaresima, V., Ferrari, M.: A mini-review on functional near-infrared spectroscopy (fNIRS): where do we stand, and where should we go? Photonics 6(3), 87 (2019)CrossRefGoogle Scholar
  11. 11.
    Bunce, S., Izzetoglu, K., Izzetoglu, M., Onaral, K., Banu, O., Kambiz, P.: Functional near-infrared spectroscopy. IEEE Eng. Med. Biol. Mag. 25(4), 54–62 (2006)CrossRefGoogle Scholar
  12. 12.
    Friston, K.J.: Functional and effective connectivity in neuroimaging: a synthesis. Hum. Brain Mapp. 2(1–2), 56–78 (1994)CrossRefGoogle Scholar
  13. 13.
    Rojas, R.F., Huang, X., Ou, K.L.: A machine learning approach for the identification of a biomarker of human pain using fNIRS. Sci. Rep. 9(1), 5645 (2019)CrossRefGoogle Scholar
  14. 14.
    Karamzadeh, N., Amyot, F., Kenney, K., Anderson, A., Chowdhry, F., Dashtestani, H., Wassermann, E.M., Chernomordik, V., Boccara, C., Wegman, E., Diaz-Arrastia, R., Gandjbakhche, A.H.: A machine learning approach to identify functional biomarkers in the human prefrontal cortex for individuals with traumatic brain injury using functional near-infrared spectroscopy. Brain Behav. 6(11), 1–14 (2016)CrossRefGoogle Scholar
  15. 15.
    Lopez-Martinez, D., Peng, K., Lee, A., Borsook, D., Picard, R.: Pain detection with fNIRS-measured brain signals: a personalized machine learning approach using the wavelet transform and bayesian hierarchical modeling with dirichlet process priors. In: 8th International Conference on Affective Computing and Intelligent Interaction Workshops and Demos (ACIIW) (2019)Google Scholar
  16. 16.
    Ho, T.K.K., Gwak, J., Park, C.M., Song, J.I.: Discrimination of mental workload levels from multi-channel fNIRS using deep learning-based approaches. IEEE Access 7, 24392–24403 (2019)CrossRefGoogle Scholar
  17. 17.
    Hiwa, S., Hanawa, K., Tamura, R., Hachisuka, K., Hiroyasu1, T.: Analyzing brain functions by subject classification of functional near-infrared spectroscopy data using convolutional neural networks analysis. Comput. Intell. Neurosci. 2016, 1–9 (2016)Google Scholar
  18. 18.
    Benerradi, J., Maior, H.A., Marinescu, A., Clos, J., Wilson, M.L.: Exploring machine learning approaches for classifying mental workload using fNIRS data from HCI tasks. In: Proceedings of the Halfway to the Future Symposium. ACM (2019)Google Scholar
  19. 19.
    Trakoolwilaiwan, T., Behboodi, B., Lee, J., Kim, K., Choi, J.W.: Convolutional neural network for high-accuracy functional near-infrared spectroscopy in a brain-computer interface: three-class classification of rest, right-, and left-hand motor execution. Neurophotonics 5(1), 011008-1–15 (2017)Google Scholar
  20. 20.
    Dashtestani, H., Zaragoza, R., Kermanian, R., Knutson, K.M., Halem, M., Casey, A., Karamzadeh, N.S., Anderson, A.A., Boccara, A.C., Gandjbakhche, A.: The role of prefrontal cortex in a moral judgment task using functional near-infrared spectroscopy. Brain Behav. 8, 1–10 (2018)CrossRefGoogle Scholar
  21. 21.
    Venu1, S.K., Sadeghian, R., Sardari, S.E., Dashtestani, H., Gandjbakhche, A., Aram, S.: Neural correlates of brain activities in gaming using functional near-infrared spectroscopy and Iowa gambling task. In: Abstracts of 11th International Conference on Physical Ergonomics and Human Factors (2019)Google Scholar
  22. 22.
    Sarraf, S., Tofighi, G.: Deep Learning-Based Pipeline To Recognize Alzheimer’s disease using fMRI data. In: Future Technologies Conference, pp. 1–5 (2016)Google Scholar
  23. 23.
    Thomas, A.W., Heekeren, H.R., Müller, K.R., Samek, W.: Interpretable LSTMs for whole-brain neuroimaging analyses, pp. 1–26 (2018)Google Scholar
  24. 24.
    Fong, R.C., Scheirer, W.J., Cox, D.D.: Using human brain activity to guide machine learning. Sci. Rep. 8(5397), 1–10 (2018)Google Scholar
  25. 25.
    Jeong, J.H., Yu, B.W., Lee, D.H., Lee, S.W.: Classification of drowsiness levels based on a deep spatio-temporal convolutional bidirectional LSTM network using electroencephalography signals. Brain Sci. 9(348), 1–18 (2019)Google Scholar
  26. 26.
    Al Zoubi, O., Ki Wong, C., Kuplicki, R.T., Yeh, H.W., Mayeli, A., Refai, H., Paulus, M., Bodurka, J.: Predicting age from brain EEG signals-a machine learning approach. Frontiers Aging Neurosci. 10(184), 1–12 (2018)Google Scholar
  27. 27.
    Mumtaza, W., Xiad, L., AzharAlia, S.S., Mohd Yasinb, M.A., Hussainc, M., Malika, A.S.: Electroencephalogram (EEG)-based computer-aided technique to diagnose major depressive disorder (MDD). Biomed. Signal Process. Control 31, 108–115 (2017)CrossRefGoogle Scholar
  28. 28.
    Saadati, M., Nelson, J., Ayaz, H.: Multimodal fNIRS-EEG classification using deep learning algorithms for brain-computer interfaces purposes. In: Advances in Intelligent Systems and Computing, pp. 209–220 (2019)Google Scholar
  29. 29.
    Shin, J., Kwon, J., Im, C.H.: A ternary hybrid EEG-NIRS brain-computer interface for the classification of brain activation patterns during mental arithmetic, motor imagery, and idle state. Frontiers Neuroinf. 12(5), 1–9 (2018)Google Scholar
  30. 30.
    Sirpal, P., Kassab, A., Pouliot, P., Nguyen, D.K., Lesage, F.: fNIRS improves seizure detection in multimodal EEG-fNIRS recordings. J. Biomed. Opt. 24(5), 1–9 (2019)CrossRefGoogle Scholar
  31. 31.
    Dargazany, A.R., Abtahi, M., Mankodiya, K.: An end-to-end (Deep) neural network applied to raw EEG, fNIRS, and body motion data for data fusion and BCI classification task without any pre-/post-processing, pp. 1–6 (2019)Google Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2021

Authors and Affiliations

  1. 1.Harrisburg University of Science and TechnologyHarrisburgUSA
  2. 2.Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of HealthBethesdaUSA

Personalised recommendations