Skip to main content

Benchmarking Combinations of Learning and Testing Algorithms for Active Automata Learning

  • Conference paper
  • First Online:
Book cover Tests and Proofs (TAP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12165))

Included in the following conference series:

Abstract

Active automata learning comprises techniques for learning automata models of black-box systems by testing such systems. While this form of learning enables model-based analysis and verification, it may also require a substantial amount of interactions with considered systems to learn adequate models, which capture the systems’ behaviour.

The test cases executed during learning can be divided into two categories: (1) test cases to gain knowledge about a system and (2) test cases to falsify a learned hypothesis automaton. The former are selected by learning algorithms, whereas the latter are selected by conformance-testing algorithms. There exist various options for both types of algorithms and there are dependencies between them. In this paper, we investigate the performance of combinations of four different learning algorithms and seven different testing algorithms. For this purpose, we perform learning experiments using 39 benchmark models. Based on experimental results, we discuss insights regarding the performance of different configurations for various types of systems. These insights may serve as guidance for future users of active automata learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available online at http://automata.cs.ru.nl/, accessed: February 2, 2020.

  2. 2.

    Available online at http://automata.cs.ru.nl/, accessed: February 2, 2020.

References

  1. Aichernig, B.K., et al.: Learning a behavior model of hybrid systems through combining model-based testing and machine learning. In: Gaston, C., Kosmatov, N., Le Gall, P. (eds.) ICTSS 2019. LNCS, vol. 11812, pp. 3–21. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31280-0_1

    Chapter  Google Scholar 

  2. Aichernig, B.K., Bloem, R., Ebrahimi, M., Tappler, M., Winter, J.: Automata learning for symbolic execution. In: Bjørner, N., Gurfinkel, A. (eds.) 2018 Formal Methods in Computer Aided Design, FMCAD 2018, Austin, TX, USA, October 30–November 2, 2018, pp. 1–9. IEEE (2018). https://doi.org/10.23919/FMCAD.2018.8602991

  3. Aichernig, B.K., Mostowski, W., Mousavi, M.R., Tappler, M., Taromirad, M.: Model learning and model-based testing. In: Bennaceur, A., Hähnle, R., Meinke, K. (eds.) Machine Learning for Dynamic Software Analysis: Potentials and Limits. LNCS, vol. 11026, pp. 74–100. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96562-8_3

    Chapter  Google Scholar 

  4. Aichernig, B.K., Tappler, M.: Efficient active automata learning via mutation testing. J. Autom. Reason. 63(4), 1103–1134 (2019). https://doi.org/10.1007/s10817-018-9486-0

    Article  MathSciNet  MATH  Google Scholar 

  5. Angluin, D.: Learning regular sets from queries and counter examples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MATH  Google Scholar 

  6. Berg, T., Jonsson, B., Leucker, M., Saksena, M.: Insights to Angluin’s learning. Electron. Notes Theor. Comput. Sci. 118, 3–18 (2005). https://doi.org/10.1016/j.entcs.2004.12.015

    Article  MATH  Google Scholar 

  7. Brémond, N., Groz, R.: Case studies in learning models and testing without reset. In: 2019 IEEE International Conference on Software Testing, Verification and Validation Workshops, ICST Workshops 2019, Xi’an, China, April 22–23, 2019, pp. 40–45. IEEE (2019). https://doi.org/10.1109/ICSTW.2019.00030

  8. Chow, T.S.: Testing software design modeled by finite-state machines. IEEE Trans. Softw. Eng. 4(3), 178–187 (1978). https://doi.org/10.1109/TSE.1978.231496

    Article  MATH  Google Scholar 

  9. Combe, D., de la Higuera, C., Janodet, J.-C.: Zulu: an interactive learning competition. In: Yli-Jyrä, A., Kornai, A., Sakarovitch, J., Watson, B. (eds.) FSMNLP 2009. LNCS (LNAI), vol. 6062, pp. 139–146. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14684-8_15

    Chapter  Google Scholar 

  10. Fiterău-Broştean, P., Janssen, R., Vaandrager, F.: Combining model learning and model checking to analyze TCP implementations. In: Chaudhuri, S., Farzan, A. (eds.) CAV 2016. LNCS, vol. 9780, pp. 454–471. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-41540-6_25

    Chapter  Google Scholar 

  11. Fiterău-Broştean, P., Lenaerts, T., Poll, E., de Ruiter, J., Vaandrager, F.W., Verleg, P.: Model learning and model checking of SSH implementations. In: Erdogmus, H., Havelund, K. (eds.) Proceedings of the 24th ACM SIGSOFT International SPIN Symposium on Model Checking of Software, Santa Barbara, CA, USA, July 10–14, 2017, pp. 142–151. ACM (2017). https://doi.org/10.1145/3092282.3092289

  12. Fujiwara, S., von Bochmann, G., Khendek, F., Amalou, M., Ghedamsi, A.: Test selection based on finite state models. IEEE Trans. Softw. Eng. 17(6), 591–603 (1991). https://doi.org/10.1109/32.87284

    Article  Google Scholar 

  13. Groz, R., Brémond, N., Simão, A.: Using adaptive sequences for learning non-resettable FSMs. In: Unold, O., Dyrka, W., Wieczorek, W. (eds.) Proceedings of the 14th International Conference on Grammatical Inference, ICGI 2018, Wrocław, Poland, September 5–7, 2018. Proceedings of Machine Learning Research, vol. 93, pp. 30–43. PMLR (2018). http://proceedings.mlr.press/v93/groz19a.html

  14. Howar, F., Steffen, B., Merten, M.: From ZULU to RERS. In: Margaria, T., Steffen, B. (eds.) ISoLA 2010. LNCS, vol. 6415, pp. 687–704. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16558-0_55

    Chapter  Google Scholar 

  15. Isberner, M., Howar, F., Steffen, B.: The TTT algorithm: a redundancy-free approach to active automata learning. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS, vol. 8734, pp. 307–322. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11164-3_26

    Chapter  Google Scholar 

  16. Isberner, M., Howar, F., Steffen, B.: The open-source LearnLib - a framework for active automata learning. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 487–495. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_32

    Chapter  Google Scholar 

  17. Kearns, M.J., Vazirani, U.V.: An Introduction to Computational Learning Theory. MIT Press, Cambridge (1994). https://mitpress.mit.edu/books/introduction-computational-learning-theory

    Book  Google Scholar 

  18. Khosrowjerdi, H., Meinke, K.: Learning-based testing for autonomous systems using spatial and temporal requirements. In: Perrouin, G., Acher, M., Cordy, M., Devroey, X. (eds.) Proceedings of the 1st International Workshop on Machine Learning and Software Engineering in Symbiosis, MASES@ASE 2018, Montpellier, France, September 3, 2018, pp. 6–15. ACM (2018). https://doi.org/10.1145/3243127.3243129

  19. Margaria, T., Niese, O., Raffelt, H., Steffen, B.: Efficient test-based model generation for legacy reactive systems. In: Ninth IEEE International High-Level Design Validation and Test Workshop 2004, Sonoma Valley, CA, USA, November 10–12, 2004, pp. 95–100. IEEE Computer Society (2004). https://doi.org/10.1109/HLDVT.2004.1431246

  20. Neider, D., Smetsers, R., Vaandrager, F., Kuppens, H.: Benchmarks for automata learning and conformance testing. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets, Meta: The What, the How, and the Why Not?. LNCS, vol. 11200, pp. 390–416. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22348-9_23

    Chapter  Google Scholar 

  21. Niese, O.: An integrated approach to testing complex systems. Ph.D. thesis, Dortmund University of Technology (2003). https://d-nb.info/969717474/34

  22. Rivest, R.L., Schapire, R.E.: Inference of finite automata using homing sequences. Inf. Comput. 103(2), 299–347 (1993). https://doi.org/10.1006/inco.1993.1021

    Article  MathSciNet  MATH  Google Scholar 

  23. de Ruiter, J., Poll, E.: Protocol state fuzzing of TLS implementations. In: Jung, J., Holz, T. (eds.) 24th USENIX Security Symposium, USENIX Security 15, Washington, D.C., USA, August 12–14, 2015, pp. 193–206. USENIX Association (2015). https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/de-ruiter

  24. Shahbaz, M., Groz, R.: Inferring Mealy machines. In: Cavalcanti, A., Dams, D.R. (eds.) FM 2009. LNCS, vol. 5850, pp. 207–222. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-05089-3_14

    Chapter  Google Scholar 

  25. Smeenk, W., Moerman, J., Vaandrager, F., Jansen, D.N.: Applying automata learning to embedded control software. In: Butler, M., Conchon, S., Zaïdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 67–83. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25423-4_5

    Chapter  Google Scholar 

  26. Smetsers, R., Moerman, J., Janssen, M., Verwer, S.: Complementing model learning with mutation-based fuzzing. CoRR abs/1611.02429 (2016). http://arxiv.org/abs/1611.02429

  27. Steffen, B., Howar, F., Merten, M.: Introduction to active automata learning from a practical perspective. In: Bernardo, M., Issarny, V. (eds.) SFM 2011. LNCS, vol. 6659, pp. 256–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21455-4_8

    Chapter  Google Scholar 

  28. Tappler, M.: Learning-based testing in networked environments in the presence of timed and stochastic behaviour. Ph.D. thesis, Graz University of Technology (2019)

    Google Scholar 

  29. Tappler, M., Aichernig, B.K., Bloem, R.: Model-based testing IoT communication via active automata learning. In: 2017 IEEE International Conference on Software Testing, Verification and Validation, ICST 2017, Tokyo, Japan, March 13–17, 2017, pp. 276–287. IEEE Computer Society (2017). https://doi.org/10.1109/ICST.2017.32

  30. Vaandrager, F.W.: Model learning. Commun. ACM 60(2), 86–95 (2017). https://doi.org/10.1145/2967606

    Article  Google Scholar 

  31. Vasilevskii, M.P.: Failure diagnosis of automata. Cybernetics 9(4), 653–665 (1973). https://doi.org/10.1007/BF01068590

    Article  Google Scholar 

  32. Wallner, F.: Benchmarking active automata learning configurations. Bachelor’s thesis, Graz University of Technology (2019)

    Google Scholar 

  33. Wallner, F.: Learn-combinations: evaluation framework for combinations of learning and testing algorithms (2019). https://gitlab.com/felixwallner/learn-combinations. Accessed 2 Feb 2020

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Tappler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Aichernig, B.K., Tappler, M., Wallner, F. (2020). Benchmarking Combinations of Learning and Testing Algorithms for Active Automata Learning. In: Ahrendt, W., Wehrheim, H. (eds) Tests and Proofs. TAP 2020. Lecture Notes in Computer Science(), vol 12165. Springer, Cham. https://doi.org/10.1007/978-3-030-50995-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50995-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50994-1

  • Online ISBN: 978-3-030-50995-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics