Skip to main content

Reference Trajectory Based SMC of DCDC Buck Converter

  • Conference paper
  • First Online:
Book cover Advanced, Contemporary Control

Abstract

In this paper, discrete time sliding mode control of a DCDC buck converter is considered. It is demonstrated, that using a “traditional” SMC for this task can result in excessive values of the inductor current at the start of the control process. This makes the controller impractical, as one would have to significantly over-engineer the inductor to prevent its damage. On the other hand, using the reaching law approach can minimize this problem, however at the cost of reducing the robustness. Therefore, a reference trajectory following SMC is proposed, which allows to limit the initial value of the inductor current, while maintaining good robustness w.r.t. disturbances, i.e. load changes. These important properties are demonstrated in computer simulations, which take into account all aspects of real application: the PWM modulation, sampling the continuous signals etc.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bartoszewicz, A.: A new reaching law for sliding mode control of continuous time systems with constraints. Trans. Inst. Meas. Control 37(4), 515–521 (2015)

    Article  Google Scholar 

  2. Bartoszewicz, A., Adamiak, K.: A reference trajectory based discrete time sliding mode control strategy. Int. J. Appl. Math. Comput. Sci. 29(3), 517–525 (2019)

    Article  MathSciNet  Google Scholar 

  3. Bartoszewicz, A., Adamiak, K.: Discrete time sliding mode control with a desired switching variable generator. IEEE Trans. Autom. Control 65(4), 1807–1814 (2020)

    Article  MathSciNet  Google Scholar 

  4. Bartoszewicz, A., Adamiak, K.: Model reference discrete-time variable structure control. Int. J. Adapt. Control Signal Process. 32(10), 1440–1452 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bartoszewicz, A., Latosiński, P.: Discrete time sliding mode control with reduced switching - a new reaching law approach. Int. J. Robust Nonlinear Control 26(1), 47–68 (2016)

    Article  MathSciNet  Google Scholar 

  6. Bartoszewicz, A., Leśniewski, P.: New switching and nonswitching type reaching laws for SMC of discrete time systems. IEEE Trans. Control Syst. Technol. 24(2), 670–677 (2016)

    Article  Google Scholar 

  7. Bartoszewicz, A., Leśniewski, P.: Reaching law approach to the sliding mode control of periodic review inventory systems. IEEE Trans. Autom. Sci. Eng. 11, 810–817 (2014)

    Article  Google Scholar 

  8. Bartoszewicz, A., Leśniewski, P.: Reaching law-based sliding mode congestion control for communication networks. IET Control Theory Appl. 8(17), 1914–1920 (2014)

    Article  Google Scholar 

  9. DeCarlo, R.S., Zak, S., Mathews, G.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76, 212–232 (1988)

    Article  Google Scholar 

  10. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. Taylor & Francis, London (1998)

    Book  Google Scholar 

  11. Erdem, H.: Comparison of fuzzy, PI and fixed frequency sliding mode controller for DC-DC converters. In: ACEMP 2007 and Electromotion 2007 Joint Conference, pp. 684–689 (2007)

    Google Scholar 

  12. Gao, W., Wang, Y., Homaifa, A.: Discrete-time variable structure control systems. IEEE Trans. Industr. Electron. 42(2), 117–122 (1995)

    Article  Google Scholar 

  13. Guo, S., Lin-Shi, X., Allard, B., Gao, Y., Ruan, Y.: Digital sliding-mode controller for high-frequency DC/DC SMPS. IEEE Trans. Power Electron. 25(5), 1120–1123 (2010)

    Article  Google Scholar 

  14. Hu, J., Shang, L., He, Y., Zhu, Z.Q.: Direct active and reactive power regulation of grid-connected DC/AC converters using sliding mode control approach. IEEE Trans. Power Electron. 26(1), 210–222 (2011)

    Article  Google Scholar 

  15. Latosiński, P., Bartoszewicz, A.: Reaching law based DSMC with a reference model. IFAC-PapersOnLine 52(16), 777–782 (2019)

    Article  Google Scholar 

  16. Liu, P.J., Chang, C.W.: CCM noninverting buck-boost converter with fast duty-cycle calculation control for line transient improvement. IEEE Trans. Power Electron. 33(6), 5097–5107 (2018)

    Article  Google Scholar 

  17. Renaudineau, H., Martin, J.P., Nahid-Mobarakeh, B., Pierfederici, S.: DC–DC converters dynamic modeling with state observer-based parameter estimation. IEEE Trans. Power Electron. 30(6), 3356–3363 (2015)

    Article  Google Scholar 

  18. Shao, S., Wheeler, P.W., Clare, J.C., Watson, A.J.: Fault detection for modular multilevel converters based on sliding mode observer. IEEE Trans. Power Electron. 28(11), 4867–4872 (2013)

    Article  Google Scholar 

  19. Tao, C., Fayed, A.A.: A buck converter with reduced output spurs using asynchronous frequency hopping. IEEE Trans. Circuits Syst. II Express Briefs 58(11), 709–713 (2011)

    Article  Google Scholar 

  20. Shtessel, Y., Edwards, C., Fridman, L., Levant, A.: Sliding Mode Control and Observation. Springer, New York (2014)

    Book  Google Scholar 

  21. Tan, S.C., Lai, Y.M., Tse, C.K., Cheung, M.K.H.: A fixed-frequency pulsewidth modulation based quasi-sliding-mode controller for buck converters. IEEE Trans. Power Electron. 20(6), 1379–1392 (2005)

    Article  Google Scholar 

  22. Utkin, V., Guldner, J., Shi, J.: Sliding Mode Control in Electromechanical Systems. CRC Press, Boca Raton (2009)

    Google Scholar 

  23. Utkin, V.: Sliding Modes in Control and Optimization. Springer, Heidelberg (1992)

    Book  Google Scholar 

  24. Veerachary, M.: Two-switch semiquadratic buck converter. IEEE Trans. Industr. Electron. 64(2), 1185–1194 (2017)

    Article  Google Scholar 

  25. Veerachary, M.: Analysis of minimum-phase fourth-order buck DC-DC converter. IEEE Trans. Industr. Electron. 63(1), 144–154 (2016)

    Article  Google Scholar 

  26. Xue, J., Lee, H.: A 2-MHz 60-W zero-voltage-switching synchronous noninverting buck-boost converter with reduced component values. IEEE Trans. Circuits Syst. II Express Briefs 62(7), 716–720 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piotr Leśniewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Leśniewski, P. (2020). Reference Trajectory Based SMC of DCDC Buck Converter. In: Bartoszewicz, A., Kabziński, J., Kacprzyk, J. (eds) Advanced, Contemporary Control. Advances in Intelligent Systems and Computing, vol 1196. Springer, Cham. https://doi.org/10.1007/978-3-030-50936-1_14

Download citation

Publish with us

Policies and ethics