Skip to main content

High Fidelity and Objectivity in Balance Assessment—A Comparative Study of the 6-Degree Motion Tracking for Body Balance Assessment to the Conventional Paper Test

  • Conference paper
  • First Online:
Advances in Human Factors and Ergonomics in Healthcare and Medical Devices (AHFE 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1205))

Included in the following conference series:

  • 938 Accesses

Abstract

Body balance is an essential capability for an individual to perform functional activities. There are various performance-based balance measures available to occupational therapists. However, conventional balance measures are limited due to subjectivity. There is a prominent need for a more objective and accurate assessment. NIMBLE, using motion sensing and tracking system was developed for a more objective and accurate measure of body movement with high-resolution recording. A pilot study was conducted in 20 participants for functional sitting balance measures by using both paper-based assessment and the NIMBLE. Results showed substantial discrepancies when the NIMBLE was able to detect balance deficits when the paper-based measures failed. The NIMBLE system can accurately capture the extraction of joint centers and segment orientation, providing the ability to calculate joint kinematics and spatiotemporal aspects of the movement. With this low cost and friendly interface, it has great potential to be widely used in healthcare practices.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benaim, C., Perennou, D.A., Villy, J., Rousseaux, M., Pelissier, J.Y.: Validation of a standardized assessment of postural control in stroke patients: the Postural Assessment Scale for Stroke Patients (PASS). Stroke 30(9), 1862–1868 (1999)

    Article  Google Scholar 

  2. Medley, A., Thompson, M.: Development, reliability, and validity of the Sitting Balance Scale. Physiotherapy Theor. Pract. 27(7), 471–481 (2011)

    Article  Google Scholar 

  3. Berg, K., Wood-Dauphinee, S., Williams, J., Gayton, D.: Measuring balance in the elderly: preliminary development of an instrument. Physiotherapy Can. 41, 304–311 (1989)

    Article  Google Scholar 

  4. Gorman, S.L., Harro, C.C., Platko, C., Greenwald, C.: Examining the function in sitting test for validity, responsiveness, and minimal clinically important difference in inpatient rehabilitation. Arch. Phys. Med. Rehabil. 95, 2304–2311 (2014)

    Article  Google Scholar 

  5. Duncan, P.W., Weiner, D.K., Chandler, J., Studenski, S.: Functional reach: a new clinical measure of balance. J. Gerontol. 45(6), M192–M197 (1990)

    Article  Google Scholar 

  6. Menna, F., Remondino, F., Battisti, R., Nocerino, E.: Geometric investigation of a gaming active device. Proc. SPIE Int. Soc. Opt. Eng. 8085, 80850G (2011)

    Google Scholar 

  7. Shotton, J., Fitzgibbon, A., Cook, M., Sharp, T., Finocchio, M., Moore, R., et al.: Real-time human pose recognition in parts from single depth images. In: Proceedings of the IEEE Computer Society Conference (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Louw, A., Chang, PF., Feng, J. (2020). High Fidelity and Objectivity in Balance Assessment—A Comparative Study of the 6-Degree Motion Tracking for Body Balance Assessment to the Conventional Paper Test. In: Kalra, J., Lightner, N. (eds) Advances in Human Factors and Ergonomics in Healthcare and Medical Devices. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1205. Springer, Cham. https://doi.org/10.1007/978-3-030-50838-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50838-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50837-1

  • Online ISBN: 978-3-030-50838-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics