Skip to main content

High Accuracy Multi-channel Surface EMG Acquisition System for Prosthetic Devices Control

  • Conference paper
  • First Online:
  • 993 Accesses

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1205))

Abstract

Most of the upper limb prosthetic devices are controlled using biological signals, mainly EMG. The main problem with these systems is that the hardware needed for treatment and acquisition of the biosignals are not clear. This paper has presented the design of an interface for acquiring real-time electromyographic signals for a prosthetic upper limb system, considering the stages of acquisition, digitalization and presentation of the information, using a high-speed and high-resolution system. The digitalization system uses a 24-bit, 256-kSPS, 8 channel ADC whose information is read with a SOC ZYNQ-7000 based system, PYNQ. Using the advantages of the PYNQ, the Programmable Logic of the device, ensures the parallel synchronous acquisition, while the Processing System handles the datacasting and the communication of the information.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Young, A.J., Hargrove, L.J., Kuiken, T.A.: Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. IEEE Trans. Biomed. Eng. 59, 645–652 (2012). https://doi.org/10.1109/TBME.2011.2177662

    Article  Google Scholar 

  2. Bennett, D.A., Mitchell, J.E., Truex, D., Goldfarb, M.: Design of a myoelectric transhumeral prosthesis. IEEE/ASME Trans. Mechatron. 21, 1868–1879 (2016). https://doi.org/10.1109/TMECH.2016.2552999

    Article  Google Scholar 

  3. Lenzi, T., Lipsey, J., Sensinger, J.W.: The RIC Arm—a small anthropomorphic transhumeral prosthesis. IEEE/ASME Trans. Mechatron. 21, 2660–2671 (2016). https://doi.org/10.1109/TMECH.2016.2596104

    Article  Google Scholar 

  4. Montagnani, F., Controzzi, M., Cipriani, C.: Is it finger or wrist dexterity that is missing in current hand prostheses? IEEE Trans. Neural Syst. Rehabil. Eng. 23, 600–609 (2015). https://doi.org/10.1109/TNSRE.2015.2398112

    Article  Google Scholar 

  5. Smit, G., Plettenburg, D.H., Van Der Helm, F.C.T.: The lightweight Delft Cylinder Hand: first multi-articulating hand that meets the basic user requirements. IEEE Trans. Neural Syst. Rehabil. Eng. 23, 431–440 (2015). https://doi.org/10.1109/TNSRE.2014.2342158

    Article  Google Scholar 

  6. Mori, M., MacDorman, K.F., Kageki, N.: The uncanny valley. IEEE Robot. Autom. Mag. 19, 98–100 (2012). https://doi.org/10.1109/MRA.2012.2192811

    Article  Google Scholar 

  7. Resnik, L., Klinger, S.L., Etter, K.: The DEKA Arm: its features, functionality, and evolution during the Veterans Affairs Study to optimize the DEKA Arm. Prosthet. Orthot. Int. 38, 492–504 (2014). https://doi.org/10.1177/0309364613506913

    Article  Google Scholar 

  8. Yang, D., Yang, W., Huang, Q., Liu, H.: Classification of multiple finger motions during dynamic upper limb movements. IEEE J. Biomed. Health Inform. 134–141 (2015). https://doi.org/10.1109/JBHI.2015.2490718

  9. Chen, W., Xiong, C., Yue, S.: Mechanical implementation of kinematic synergy for continual grasping generation of anthropomorphic hand. IEEE/ASME Trans. Mechatron. 20, 1249–1263 (2014). https://doi.org/10.1109/TMECH.2014.2329006

    Article  Google Scholar 

  10. Madusanka, D.G.K., Gopura, R.A.R.C., Amarasingha, Y.W.R., Mann, G.K.I.: IBVS and EMG based reach-to-grasp task planning method for a trans-humeral prosthesis. In: SII 2016 - 2016 IEEE/SICE International Symposium on System Integration, pp. 447–452 (2017). https://doi.org/10.1109/SII.2016.7844039

  11. Abayasiri, R.A.M., Madusanka, D.G.K., Arachchige, N.M.P., et al.: MoBio: a 5 DOF trans-humeral robotic prosthesis. In: IEEE International Conference on Rehabilitation Robotics, vol. 2, pp. 1627–1632 (2017). https://doi.org/10.1109/ICORR.2017.8009481

  12. Khushaba, R.N., Al-Timemy, A., Al-Ani, A., Al-Jumaily, A.: Myoelectric feature extraction using temporal-spatial descriptors for multifunction prosthetic hand control. In: 38th International Conference on IEEE Engineering in Medicine and Biology Society, pp. 1696–1699 (2016)

    Google Scholar 

  13. Pashaei, A., Yazdchi, M.R., Marateb, H.R.: Designing a low-noise, high-resolution, and portable four channel acquisition system for recording surface electromyographic signal. J. Med. Sig. Sens. 5, 245–252 (2015)

    Article  Google Scholar 

  14. Konrad, P.: The ABC of EMG (2005)

    Google Scholar 

  15. Analog Devices: AD8237 micropower, zero drift, true rail-to-rail instrumentation amplifier, pp. 1–28. Citeseer (2012)

    Google Scholar 

  16. Analog Devices AD7768 8-/4-channel, 24-bit, simultaneous sampling ADCs with power scaling, 110.8 kHz BW

    Google Scholar 

  17. DIGILENT PYNQ-Z1: Python Productivity for Zynq-7000 ARM/FPGA. https://store.digilentinc.com/pynq-z1-python-productivity-for-zynq-7000-arm-fpga-soc/. Accessed 19 Jun 2019

  18. PYNQ Project PYNQ - Python productivity for Zynq - Home. http://www.pynq.io/home.html. Accessed 19 Jun 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Serpa-Andrade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Proaño-Guevara, D., Serpa-Andrade, L. (2020). High Accuracy Multi-channel Surface EMG Acquisition System for Prosthetic Devices Control. In: Kalra, J., Lightner, N. (eds) Advances in Human Factors and Ergonomics in Healthcare and Medical Devices. AHFE 2020. Advances in Intelligent Systems and Computing, vol 1205. Springer, Cham. https://doi.org/10.1007/978-3-030-50838-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50838-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50837-1

  • Online ISBN: 978-3-030-50838-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics