Advertisement

Reliability Analysis of a Multipath Transport System in Fog Computing

  • Udo R. KriegerEmail author
  • Natalia M. Markovich
Conference paper
  • 65 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1231)

Abstract

We consider a fog computing approach with function virtualization in an IoT scenario that uses an SDN/NFV protocol stack and multipath communication between its clients and servers at the transport and session layers. We analyze the reliability of the associated redundant transport system comprising two logical channels that are susceptible to random failures. We model the error-prone system with a single repair unit and independent phase-type distributed repair times by a Marshall-Olkin failure model. The failure processes of both channels are described by general Markov-modulated Poisson processes (MMPPs) that are associated with the corresponding failure times and that are driven by the transitions of a common random environment. First we identify the generator matrix of the associated continuous-time Markov chain that is determined by the interarrival times of the Markov-modulated failure processes and the independent phase-type distributed repair times and the Kronecker-product structures of their associated parameter matrices. Then we show that the steady-state distribution of the restoration model can be effectively calculated by a semiconvergent iterative aggregation-disaggregation method for block matrices. Finally, we compute the associated reliability function and hazard rate of the multipath transport system.

Keywords

Fog computing Marshall-Olkin failure model Reliability function Markov-modulated arrival process Phase-type distributed repair times 

Notes

Acknowledgment

N.M. Markovich was partly supported by the Russian Foundation for Basic Research (grant 19-01-00090).

References

  1. 1.
    Aazam, M., Huh, E.-N.: Fog computing and smart gateway based communication for cloud of things. In: 2014 International Conference on Future Internet of Things and Cloud (FiCloud), Barcelona, Spain, 27–29 August, pp. 464–470 (2014)Google Scholar
  2. 2.
    Al-Fuqaha, A., et al.: Internet of Things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutor. 17(4), 2347–2376 (2015)CrossRefGoogle Scholar
  3. 3.
    Barré, S., Paasch, C., Bonaventure, O.: MultiPath TCP: from theory to practice. In: Domingo-Pascual, J., Manzoni, P., Palazzo, S., Pont, A., Scoglio, C. (eds.) NETWORKING 2011. LNCS, vol. 6640, pp. 444–457. Springer, Heidelberg (2011).  https://doi.org/10.1007/978-3-642-20757-0_35CrossRefGoogle Scholar
  4. 4.
    Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Academic Press, New York (1979)zbMATHGoogle Scholar
  5. 5.
    Bonaventure, O., et al.: Multipath QUIC. In: CoNEXT 2017, Seoul/Incheon, South Korea, 12–15 December (2017). See also https://multipath-quic.org/
  6. 6.
    Chakravarthy, S. R.: Markovian Arrival Processes. In: Wiley Encyclopedia of Operations Research and Management Science (2011)Google Scholar
  7. 7.
    Cech, H., Großmann, M., Krieger, U.R.: A fog computing architecture to share sensor data by means of blockchain functionality. In: IEEE International Conference on Fog Computing, Prague, Czech Republic, 24–26 June (2019)Google Scholar
  8. 8.
    Chiang, M., Zhang, T.: Fog and IoT: an overview of research opportunities. IEEE Internet Things J. 3(6), 854–864 (2016)CrossRefGoogle Scholar
  9. 9.
    Eiermann, A., Renner, M., Großmann, M., Krieger, U.R.: On a fog computing platform built on ARM architectures by Docker container technology. In: Eichler, G., Erfurth, C., Fahrnberger, G. (eds.) I4CS 2017. CCIS, vol. 717, pp. 71–86. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-60447-3_6CrossRefGoogle Scholar
  10. 10.
    Fischer, W., Meier-Hellstern, K.: The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 18(2), 149–171 (1993)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Großmann, M., Ioannidis, C.: Continuous integration of applications for ONOS. In: 5th IEEE Conference on Network Softwarization (NetSoft 2019), Paris, France, 24–28 June (2019)Google Scholar
  12. 12.
    Holla, S.: Orchestrating Docker. Packt Publishing Ltd., Birmingham (2015)Google Scholar
  13. 13.
    Kozyrev, D., Rykov, V., Kolev, N.: Reliability function of renewable system with Marshall-Olkin failure model. Reliab. Theory Appl. 13(1(48)), 39–46 (2018)Google Scholar
  14. 14.
    Kozyrev, D., et al.: Mobility-centric analysis of communication offloading for heterogeneous Internet of Things devices. Wireless Commun. Mob. Comput. 2018 (2018). Article ID 3761075Google Scholar
  15. 15.
    Krieger, U.R., Müller-Clostermann, B., Sczittnick, M.: Modeling and analysis of communication systems based on computational methods for Markov chains. IEEE J. Sel. Areas Commun. 8(9), 1630–1648 (1990)CrossRefGoogle Scholar
  16. 16.
    Krieger, U.R.: Analysis of a loss system with mutual overflow in a Markovian environment. In: Stewart, W. (ed.) Numerical Solution of Markov Chains, pp. 303–328. Marcel Dekker, New York (1990)Google Scholar
  17. 17.
    Krieger, U.R.: On a two-level multigrid solution method for finite Markov chains. Linear Algebra Appl. 223(224), 415–438 (1995)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Krieger, U.R.: Numerical solution of large finite Markov chains by algebraic multigrid techniques. In: Stewart, W. (ed.) Computations with Markov Chains, pp. 403–424. Kluwer Academic Publishers, Boston (1995).  https://doi.org/10.1007/978-1-4615-2241-6_23CrossRefzbMATHGoogle Scholar
  19. 19.
    Krieger, U.R., Markovich, N.: Modeling and reliability analysis of a redundant transport system in a Markovian environment. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 302–314. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-36614-8_23CrossRefGoogle Scholar
  20. 20.
    Rimal, B.P., Van, D.P., Maier, M.: Mobile edge computing empowered fiber-wireless access networks in the 5G era. IEEE Commun. Mag. 55, 192–200 (2017)CrossRefGoogle Scholar
  21. 21.
    Rykov, V.V., Kozyrev, D.V.: Analysis of renewable reliability systems by markovization method. In: Rykov, V.V., Singpurwalla, N.D., Zubkov, A.M. (eds.) ACMPT 2017. LNCS, vol. 10684, pp. 210–220. Springer, Cham (2017).  https://doi.org/10.1007/978-3-319-71504-9_19CrossRefGoogle Scholar
  22. 22.
    Rykov, V., Zaripova, E., Ivanova, N., Shorgin, S.: On sensitivity analysis of steady state probabilities of double redundant renewable system with Marshall-Olkin failure model. In: Vishnevskiy, V.M., Kozyrev, D.V. (eds.) DCCN 2018. CCIS, vol. 919, pp. 234–245. Springer, Cham (2018).  https://doi.org/10.1007/978-3-319-99447-5_20CrossRefGoogle Scholar
  23. 23.
    Rykov, V., Dimitrov, B.: Renewal redundant systems under the Marshall-Olkin failure model. Sensitivity analysis. In: Vishnevskiy, V.M., Samouylov, K.E., Kozyrev, D.V. (eds.) DCCN 2019. LNCS, vol. 11965, pp. 234–248. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-36614-8_18CrossRefGoogle Scholar
  24. 24.
    Stallings, W.: Foundations of Modern Networking: SDN, NFV, QoE, IoT, and Cloud. Pearson, Indianapolis (2016)Google Scholar
  25. 25.
    Stewart, W.J.: Probability, Markov Chains, Queues, and Simulation. Princeton University Press, Princeton (2009)CrossRefGoogle Scholar
  26. 26.
    Ziegler, H.M., et al.: Integration of fog computing and blockchain technology using the plasma framework. In: Proceedings of the EEE International Conference on Blockchain and Cryptocurrency (ICBC 2019), May 2019, Seoul, South Korea (2019)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Fakultät WIAI, Otto-Friedrich-UniversitätBambergGermany
  2. 2.V.A. Trapeznikov Institute of Control SciencesRussian Academy of SciencesMoscowRussia

Personalised recommendations