Advertisement

Quantum Router for Qutrit Networks

  • Marek SawerwainEmail author
  • Joanna Wiśniewska
Conference paper
  • 70 Downloads
Part of the Communications in Computer and Information Science book series (CCIS, volume 1231)

Abstract

Networks of quantum circuits or, more generally, networks transmitting quantum information will need, just like classical networks (e.g. internet), a mechanism for directing data to adequate nodes. Routing, understood as packet switching, is one of the most important processes in classical networks. The issue of routing is also present in quantum networks and an appropriate construction of a quantum router is required to transfer data to specific points in the network. We describe an implementation of a router for qutrits in this chapter. The router is four-qutrit quantum circuit (with one controlling unit). The efficiency and the accuracy of router’s work is tested by the Fidelity measure. The circuit’s dynamics is expressed by a Hamiltonian where the role of generalized Pauli operators is played by the Gell-Mann operators.

Keywords

Quantum networks Quantum router Qutrits 

Notes

Acknowledgments

We would like to thank for useful discussions with the Q-INFO group at the Institute of Control and Computation Engineering (ISSI) of the University of Zielona Góra, Poland. We would like also to thank to anonymous referees for useful comments on the preliminary version of this chapter. The numerical results were done using the hardware and software available at the “GPU \(\mu \)-Lab” located at the Institute of Control and Computation Engineering of the University of Zielona Góra, Poland.

References

  1. 1.
    Behera, B.K., Seth, S., Das, A., Panigrahi, P.K.: Demonstration of entanglement purification and swapping protocol to design quantum repeater in IBM quantum computer. arXiv:1712.00854 [quant-ph] (2017)
  2. 2.
    Behera, B.K., Reza, T., Gupta, A., Panigrahi, P.K.: Designing quantum router in IBM quantum computer. Quantum Inf. Process. 18(11), 1–13 (2019).  https://doi.org/10.1007/s11128-019-2436-xCrossRefGoogle Scholar
  3. 3.
    Bergmann, M., van Loock, P.: Hybrid quantum repeater for qudits. Phys. Rev. A 99, 032349 (2019)CrossRefGoogle Scholar
  4. 4.
    Briegel, H.J., Dür, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)CrossRefGoogle Scholar
  5. 5.
    Bruderer, M., Franke, K., Ragg, S., Belzig, W., Obreschkow, D.: Exploiting boundary states of imperfect spin chains for high-fidelity state transfer. Phys. Rev. A 85, 022312 (2012)CrossRefGoogle Scholar
  6. 6.
    Caleffi, M.: Optimal routing for quantum networks. IEEE Access 5, 22299–22312 (2017)CrossRefGoogle Scholar
  7. 7.
    Christensen, K.S., Rasmussen, S.E., Petrosyan, D., Zinner, N.T.: Coherent router for quantum networks with superconducting qubits. Phys. Rev. Res. 2, 013004 (2020)CrossRefGoogle Scholar
  8. 8.
    Dahlberg, A., Wehner, S.: SimulaQron—a simulator for developing quantum Internet software. Quantum Sci. Technol. 4(1), 015001 (2018).  https://doi.org/10.1088/2058-9565/aad56eCrossRefGoogle Scholar
  9. 9.
    Diadamo, S., Nözel, J., Zanger, B., Bese, M.M.: QuNetSim: a software framework for quantum networks. arXiv:abs/2003.06397 (2020)
  10. 10.
    Diadamo, S., Nözel, J., Zanger, B., Bese, M.M.: Github repository (2020). https://github.com/tqsd/QuNetSim
  11. 11.
    Domino, K., Gawron, P.: An algorithm for arbitrary-order cumulant tensor calculation in a sliding window of data streams. Int. J. Appl. Math. Comput. Sci. 29(1), 195–206 (2019)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777–780 (1935)CrossRefGoogle Scholar
  13. 13.
    Erhard, M., Malik, M., Zeilinger, A.: A quantum router for high-dimensional entanglement. Quantum Sci. Technol. 2(1), 014001 (2017).  https://doi.org/10.1088/2058-9565/aa5917CrossRefGoogle Scholar
  14. 14.
    Goswami, K., et al.: Indefinite causal order in a quantum switch. Phys. Rev. Lett. 121, 090503 (2018)CrossRefGoogle Scholar
  15. 15.
    Gyongyosi, L., Imre, S.: Entanglement-gradient routing for quantum networks. Sci. Rep. 7, 14255 (2017)CrossRefGoogle Scholar
  16. 16.
    Hahn, F., Pappa, A., Eisert, J.: Quantum network routing and local complementation. npj Quantum Inf. 5, 76 (2019)CrossRefGoogle Scholar
  17. 17.
    Hall, B.C.: Lie Groups, Lie Algebras, and Representations: An Elementary Introduction. Springer, New York (2003).  https://doi.org/10.1007/978-3-319-13467-3CrossRefzbMATHGoogle Scholar
  18. 18.
    Hu, C.: Photonic transistor and router using a single quantum-dot-confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)CrossRefGoogle Scholar
  19. 19.
    Jankowski, N., Linowiecki, R.: A fast neural network learning algorithm with approximate singular value decomposition. Int. J. Appl. Math. Comput. Sci. 29(3), 581–594 (2019)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Luo, Y.H., et al.: Quantum teleportation in high dimensions. Phys. Rev. Lett. 123, 070505 (2019)CrossRefGoogle Scholar
  21. 21.
    Marchukov, O., Volosniev, A., Valiente, M., et al.: Quantum spin transistor with a Heisenberg spin chain. Nat. Commun. 7, 13070 (2016)CrossRefGoogle Scholar
  22. 22.
    Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)zbMATHGoogle Scholar
  23. 23.
    Pant, M., Krovi, H., Towsley, D., et al.: Routing entanglement in the quantum Internet. npj Quantum Inf. 5, 25 (2019)CrossRefGoogle Scholar
  24. 24.
    Pedersen, L.H., Møller, N.M., Mølmer, K.: Fidelity of quantum operations. Phys. Lett. 384 A 367, 47–51 (2007)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Plenio, M.B., Hartley, J., Eisert, J.: Dynamics and manipulation of entanglement in coupled harmonic systems with many degrees of freedom. New J. Phys. 6(1), 36 (2004)CrossRefGoogle Scholar
  26. 26.
    Rasmussen, S.E., Christensen, K.S., Zinner, N.T.: Controllable two-qubit swapping gate using superconducting circuits. Phys. Rev. B 99, 134508 (2019)CrossRefGoogle Scholar
  27. 27.
    Van Meter, R.: Quantum Networking. Wiley, Hoboken (2014).  https://doi.org/10.1002/9781118648919CrossRefzbMATHGoogle Scholar
  28. 28.
    Wallnöfer, J., Zwerger, M., Muschik, C., Sangouard, N., Dür, W.: Two-dimensional quantum repeaters. Phys. Rev. A 94, 052307 (2016)CrossRefGoogle Scholar
  29. 29.
    Wang, M., Chen, X., Luo, S., et al.: Efficient entanglement channel construction schemes for a theoretical quantum network model with d-level system. Quantum Inf. Process. 11, 1715–1739 (2012)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Zhukov, A.A., Kiktenko, E.O., Elistratov, A.A., Pogosov, W.V., Lozovik, Y.E.: Quantum communication protocols as a benchmark for programmable quantum computers. Quantum Inf. Process. 18(1), 1–23 (2018).  https://doi.org/10.1007/s11128-018-2144-yCrossRefzbMATHGoogle Scholar
  31. 31.
    Zwerger, M., Lanyon, B.P., Northup, T.E., Muschik, C.A., Dür, W., Sangouard, N.: Quantum repeaters based on trapped ions with decoherence-free subspace encoding. Quantum Sci. Technol. 2(4), 044001 (2017).  https://doi.org/10.1088/2058-9565/aa7983CrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Control and Computation EngineeringUniversity of Zielona GóraZielona GóraPoland
  2. 2.Institute of Information Systems, Faculty of CyberneticsMilitary University of TechnologyWarsawPoland

Personalised recommendations