Minimising the Churn Out of the Service by Using a Fairness Mechanism

  • Izabela MazurEmail author
  • Jacek Rak
  • Krzysztof Nowicki
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 1231)


The paper proposes an algorithm of bandwidth distribution, ensuring fairness to end-users in computer networks. The proposed algorithm divides users into satisfied and unsatisfied users. It provides fairness in terms of quality of experience (QoE) for satisfied users and quality of service (QoS) for unsatisfied users. In this paper, we present detailed comparisons relevant to service providers to show the advantages of the proposed algorithm over the popular max-min algorithm. Our algorithm is designed to provide service providers with a mechanism to minimize the number of end-user terminations of service, which is one of the most desired factors for service providers.


Fairness QoE QoS Churn 


  1. 1.
    White paper: Cisco visual networking index: forecast and trends, 2017–2022 (2018)Google Scholar
  2. 2.
    Spiteri, K., Sitaraman, R., Sparacio, D.: From theory to practice: improving bitrate adaptation in the dash reference player. In: Proceedings of the 9th ACM Multimedia Systems Conference, pp. 123–137 (2018).
  3. 3.
    Online: Definition of fairness in English by vocabulary dictionaries. Accessed 7 Feb 2020
  4. 4.
    Online: Definition of fairness in English by Oxford dictionaries. Accessed 7 Feb 2020
  5. 5.
    Online: Definition of fairness in English by Cambridge dictionaries. Accessed 7 Feb 2020
  6. 6.
    Basil, A.O., Mu, M., Al-Sherbaz, A.: A software defined network based research on fairness in multimedia. In: Proceedings of the 1st International Workshop on Fairness, Accountability, and Transparency in MultiMedia. FAT/MM 2019, pp. 11–18. ACM (2019)
  7. 7.
    Gupta, V., Krishnamurthy, S.V., Faloutsos, M.: Improving the performance of TCP in the presence of interacting UDP flows in ad hoc networks. In: Mitrou, N., Kontovasilis, K., Rouskas, G.N., Iliadis, I., Merakos, L. (eds.) NETWORKING 2004. LNCS, vol. 3042, pp. 64–75. Springer, Heidelberg (2004). Scholar
  8. 8.
    Domański, A., Domańska, J., Nowak, S., Czachórski, T.: A contribution to the fair scheduling for the TCP and UDP streams. In: Kwiecień, A., Gaj, P., Stera, P. (eds.) CN 2010. CCIS, vol. 79, pp. 207–216. Springer, Heidelberg (2010). Scholar
  9. 9.
    Mansy, A., Fayed, M., Ammar, M.: Network-layer fairness for adaptive video streams. In: 2015 IFIP Networking Conference (IFIP Networking), pp. 1–9 (2015).
  10. 10.
    Narayanan, R., Srinivasan, M., Karthikeya, S.A., Murthy, C.S.R.: A novel fairness-driven approach for heterogeneous gateways’ link scheduling in IoT networks. In: 2017 IEEE International Conference on Communications (ICC), pp. 1–7 (2017).
  11. 11.
    Malamos, A.G., Malamas, E.N., Varvarigou, T.A., Ahuja, S.R.: On the definition, modelling, and implementation of quality of service (QoS) in distributed multimedia systems. In: Proceedings of IEEE International Symposium on Computers and Communications (Cat. No. PR00250), pp. 397–403 (1999).
  12. 12.
    Brunnström, K., Moor, K., Dooms, A., Egger-Lampl, S., et al.: Qualinet White Paper on Definitions of Quality of Experience (2013)Google Scholar
  13. 13.
    Jain, R., Chiu, D.M., WR, H.: A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. CoRR cs.NI/9809099 (1998)Google Scholar
  14. 14.
    Chen, Z., Zhang, C.: A new measurement fornetwork sharing fairness. Comput. Math. Appl. 50(5), 803–808 (2005)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948). Scholar
  16. 16.
    Nowicki, K., Malinowski, A., Sikorski, M.: More just measure of fairness for sharing network resources. In: Gaj, P., Kwiecień, A., Stera, P. (eds.) CN 2016. CCIS, vol. 608, pp. 52–58. Springer, Cham (2016). Scholar
  17. 17.
    Hossfeld, T., Skorin-Kapov, L., Heegaard, P.E., Varela, M.: Definition of QoE fairness in shared systems. IEEE Commun. Lett. 21(1), 184–187 (2017). Scholar
  18. 18.
    Hossfeld, T., Skorin-Kapov, L., Heegaard, P.E., Varela, M.: A new QoE fairness index for QoE management. Qual. User Exp. 3(1), 4 (2018). Scholar
  19. 19.
    Martinez-Yelmo, I., Seoane, I., Guerrero, C.: Fair Quality of Experience (QoE) measurements related with networking technologies. In: Osipov, E., Kassler, A., Bohnert, T.M., Masip-Bruin, X. (eds.) WWIC 2010. LNCS, vol. 6074, pp. 228–239. Springer, Heidelberg (2010). Scholar
  20. 20.
    Shaikh, J., Fiedler, M., Collange, D.: Quality of Experience from user and network perspectives. Ann. Telecommun. Annales des Télécommunications 65(1), 47–57 (2010). Scholar
  21. 21.
    Piamrat, K., Viho, C., Bonnin, J., Ksentini, A.: Quality of experience measurements for video streaming over wireless networks. In: 2009 Sixth International Conference on Information Technology: New Generations, pp. 1184–1189 (2009)
  22. 22.
    Georgopoulos, P., Elkhatib, Y., Broadbent, M., Mu, M., Race, N.: Towards network-wide QoE fairness using openflow-assisted adaptive video streaming. In: Proceedings of the 2013 ACM SIGCOMM Workshop on Future Human-centric Multimedia Networking, pp. 15–20 (2013).
  23. 23.
    Brun, J., Safaei, F., Boustead, P.: Fairness and playability in online multiplayer games. In: 3rd IEEE Consumer Communications and Networking Conference, vol. 2, pp. 1199–1203 (2006).
  24. 24.
    Zander, S., Leeder, I., Armitage, G.: Achieving fairness in multiplayer network games through automated latency balancing. In: Proceedings of the 2005 ACM SIGCHI International Conference on Advances in Computer Entertainment Technology, pp. 117–124 (2005).
  25. 25.
    Hirota, R., icm Kuribayash, S.: Evaluation of fairness in multiplayer network games. In: Proceedings of 2011 IEEE Pacific Rim Conference on Communications, Computers and Signal Processing, pp. 7–11 (2011)Google Scholar
  26. 26.
    Deressa, M., Sheng, M., Wimmers, M., Liu, J., Mekonnen, M.: Maximizing quality of experience in device-to-device communication using an evolutionary algorithm based on users’ behavior. IEEE Access 5, 3878–3888 (2017). Scholar
  27. 27.
    Le Boudec, J.Y.: Rate adaptation. A Tutorial, Congestion Control and Fairness (2005)Google Scholar
  28. 28.
    Kushner, H.J., Whiting, P.A.: Convergence of proportional-fair sharing algorithms under general conditions. IEEE Trans. Wirel. Commun. 3(4), 1250–1259 (2004)CrossRefGoogle Scholar
  29. 29.
    Briscoe, B.: Flow rate fairness: dismantling a religion. SIGCOMM Comput. Commun. Rev. 37(2), 63–74 (2007)CrossRefGoogle Scholar
  30. 30.
    Mueller, C., Lederer, S., Timmerer, C.: An evaluation of dynamic adaptive streaming over HTTP in vehicular environments. In: Proceedings of the 4th Workshop on Mobile Video, pp. 37–42. Association for Computing Machinery (2012).
  31. 31.
    Akhshabi, S., Narayanaswamy, S., Begen, A.C., Dovrolis, C.: An experimental evaluation of rate-adaptive video players over HTTP. Image Commun. 27(4), 271–287 (2012)Google Scholar
  32. 32.
    Akhtar, Z., et al.: Oboe: auto-tuning video ABR algorithms to network conditions. In: Proceedings of the 2018 Conference of the ACM Special Interest Group on Data Communication, pp. 44–58 (2018).
  33. 33.
    Bentaleb, A., Begen, A.C., Zimmermann, R.: SDNDASH: improving QoE of HTTP adaptive streaming using software defined networking. In: Proceedings of the 24th ACM International Conference on Multimedia, pp. 1296–1305 (2016).
  34. 34.
    ITU-T: Recommendation P.800 - Methods for subjective determination of transmission quality. International Telecommunication Union (1996)Google Scholar
  35. 35.
    Hossfeld, T., Heegaard, P.E., Skorin-Kapov, L., Varela, M.: No silver bullet: QoE metrics, QoE fairness, and user diversity in the context of QoE management. In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2017).
  36. 36.
    Reichl, P., Egger, S., Schatz, R., D’Alconzo, A.: The logarithmic nature of QoE and the role of the Weber-Fechner law in QoE Assessment. In: 2010 IEEE International Conference on Communications, pp. 1–5 (2010).
  37. 37.
    Mazur, I.: Ensuring of fairness in high speed computer networks. M.Sc. thesis, University of Technology Gdansk (2018)Google Scholar
  38. 38.
    Egger-Lampl, S., Reichl, P., Hossfeld, T., Schatz, R.: Time is bandwidth? Narrowing the gap between subjective time perception and quality of experience. In: Proceedings of IEEE International Conference on Communications. (2012).

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Faculty of Electronics, Telecommunications and InformaticsGdansk University of TechnologyGdanskPoland

Personalised recommendations