Skip to main content

Morphological Imaging

  • Chapter
  • First Online:
CyberKnife NeuroRadiosurgery

Abstract

Accurate definition of the treated lesion(s) and surrounding organs at risk (OARs) is mandatory in stereotactic radiosurgery applications. Treatment planning and delivery of CyberKnife applications are based on computed tomography (CT) images of the patient. Additional morphological and functional studies are also used to aid the identification of target and surrounding organs at risk (OARs). These images are imported into the system and registered with the planning CT study using dedicated image registration algorithms. MR imaging is the modality of choice for neuro-radiosurgery applications due to its superior soft tissue contrast. In this chapter, the role of CT and MRI in CyberKnife radiosurgery is analyzed, followed by corresponding general image acquisition guidelines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Schmidt MA, Payne GS. Radiotherapy planning using MRI. Phys Med Biol. 2015;60:R323–61.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Chin LS, Regine WF. Principles and practice of stereotactic radiosurgery. New York, NY: Springer; 2015.

    Google Scholar 

  3. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113:1641–66.

    CAS  PubMed  Google Scholar 

  4. Verdun FR, Racine D, Ott JG, et al. Image quality in CT: from physical measurements to model observers. Phys Med. 2015;31:823–43.

    CAS  PubMed  Google Scholar 

  5. CyberKnife Treatment Delivery Manual (version 1062940-ENG-A). Accuray Inc.

    Google Scholar 

  6. Shibamoto Y, Naruse A, Fukuma H, et al. Influence of contrast materials on dose calculation in radiotherapy planning using computed tomography for tumors at various anatomical regions: a prospective study. Radiother Oncol. 2007;84:52–5.

    CAS  PubMed  Google Scholar 

  7. Zabel-Du Bois A, Ackermann B, Hauswald H, et al. Influence of intravenous contrast agent on dose calculation in 3-d treatment planning for radiosurgery of cerebral arteriovenous malformations. Strahlentherapie und Onkol. 2009;185:318–24.

    Google Scholar 

  8. Kim HJ, Chang AR, Park YK, Ye SJ. Dosimetric effect of CT contrast agent in CyberKnife treatment plans. Radiat Oncol. 2013;8:1.

    CAS  Google Scholar 

  9. International Atomic Energy Agency (IAEA). Quality assurance programme for computed tomography: diagnostic and therapy applications. IAEA Human Health Series No. 19. Vienna, Austria; 2012.

    Google Scholar 

  10. Brown RW, Cheng YCN, Haacke EM, et al. Magnetic resonance imaging: physical principles and sequence design. Second Edi: Wiley; 2014.

    Google Scholar 

  11. McRobbie DW, Moore EA, Graves MJ. MRI from picture to proton: Cambridge University Press; 2017.

    Google Scholar 

  12. Haacke EM, Reichenbach JR. Susceptibility weighted imaging in MRI: basic concepts and clinical applications: Wiley-Blackwell; 2014.

    Google Scholar 

  13. Chavhan GB, Babyn PS, Jankharia BG, et al. Steady-state MR imaging sequences: physics, classification, and clinical applications. Radiographics. 2008;28:1147–60.

    PubMed  Google Scholar 

  14. Bitar R, Leung G, Perng R, et al. MR pulse sequences: what every radiologist wants to know but is afraid to ask. Radiographics. 2006;26:513–37.

    PubMed  Google Scholar 

  15. Hargreaves B. Rapid gradient-echo imaging. J Magn Reson Imaging. 2012;36:1300–13.

    PubMed  PubMed Central  Google Scholar 

  16. Gossuin Y, Hocq A, Gillis P, Vuong LQ. Physics of magnetic resonance imaging: from spin to pixel. J Phys D Appl Phys. 2010;43:213001.

    Google Scholar 

  17. Ranga A, Agarwal Y, Garg K. Gadolinium based contrast agents in current practice: risks of accumulation and toxicity in patients with normal renal function. Indian J Radiol Imaging. 2017;27:141.

    PubMed  PubMed Central  Google Scholar 

  18. Khawaja AZ, Cassidy DB, Al Shakarchi J, et al. Revisiting the risks of MRI with gadolinium based contrast agents—review of literature and guidelines. Insights Imaging. 2015;6:553–8.

    PubMed  PubMed Central  Google Scholar 

  19. Kanda T, Nakai Y, Oba H, et al. Gadolinium deposition in the brain. Magn Reson Imaging. 2016;34:1346–50.

    CAS  PubMed  Google Scholar 

  20. Gulani V, Calamante F, Shellock FG, et al. Gadolinium deposition in the brain: summary of evidence and recommendations. Lancet Neurol. 2017;16:564–70.

    PubMed  Google Scholar 

  21. Ruan C. MRI artifacts: mechanism and control. Pers Conclus. 2013:1–9.

    Google Scholar 

  22. Bennett LH, Wang PS, Donahue MJ. Artifacts in magnetic resonance imaging from metals. J Appl Phys. 1996;79:4712.

    CAS  Google Scholar 

  23. Weygand J, Fuller CD, Ibbott GS, et al. Spatial precision in magnetic resonance imaging–guided radiation therapy: the role of geometric distortion. Int J Radiat Oncol. 2016;95:1304–16.

    Google Scholar 

  24. Seibert TM, White NS, Kim GY, et al. Distortion inherent to magnetic resonance imaging can lead to geometric miss in radiosurgery planning. Pract Radiat Oncol. 2016;6:e319–28.

    PubMed  PubMed Central  Google Scholar 

  25. Karaiskos P, Moutsatsos A, Pappas E, et al. A simple and efficient methodology to improve geometric accuracy in gamma knife radiation surgery: implementation in multiple brain metastases. Int J Radiat Oncol Biol Phys. 2014;90:1234–41.

    PubMed  Google Scholar 

  26. Pappas EP, Alshanqity M, Moutsatsos A, et al. MRI-related geometric distortions in stereotactic radiotherapy treatment planning: evaluation and dosimetric impact. Technol Cancer Res Treat. 2017;16:153303461773545.

    Google Scholar 

  27. Baldwin LN, Wachowicz K, Fallone BG. A two-step scheme for distortion rectification of magnetic resonance images. Med Phys. 2009;36:3917–26.

    PubMed  Google Scholar 

  28. Le Bihan D, Poupon C, Amadon A, Lethimonnier F. Artifacts and pitfalls in diffusion MRI. J Magn Reson Imaging. 2006;24:478–88.

    PubMed  Google Scholar 

  29. Erasmus LJ, Hurter D, Naudé M, et al. A short overview of MRI artefacts. SA J Radiol. 2004;8:13–7.

    Google Scholar 

  30. Smith T, Nayak K. MRI artifacts and correction strategies. Imaging. 2010;2:445–57.

    Google Scholar 

  31. Heiland S. From A as in aliasing to Z as in zipper: artifacts in MRI. Clin Neuroradiol. 2008;18:25–36.

    Google Scholar 

  32. Stadler A, Schima W, Ba-Ssalamah A, et al. Artifacts in body MR imaging: their appearance and how to eliminate them. Eur Radiol. 2007;17:1242–55.

    PubMed  Google Scholar 

  33. Bernstein MA, Huston J, Ward HA. Imaging artifacts at 3.0T. J Magn Reson Imaging. 2006;24:735–46.

    PubMed  Google Scholar 

  34. Karger CP, Höss A, Bendl R, et al. Accuracy of device-specific 2D and 3D image distortion correction algorithms for magnetic resonance imaging of the head provided by a manufacturer. Phys Med Biol. 2006;51:N253–61.

    PubMed  Google Scholar 

  35. Pappas EP, Seimenis I, Dellios D, et al. EP-1726: efficacy of vendor supplied distortion correction algorithms for a variety of MRI scanners. Radiother Oncol. 2017;123:S947–8.

    Google Scholar 

  36. Price RG, Kadbi M, Kim J, et al. Technical note: characterization and correction of gradient nonlinearity induced distortion on a 1.0 T open bore MR-SIM. Med Phys. 2015;42:5955–60.

    PubMed  PubMed Central  Google Scholar 

  37. Price RG, Knight RA, Hwang K-P, et al. Optimization of a novel large field of view distortion phantom for MR-only treatment planning. J Appl Clin Med Phys. 2017;18:51–61.

    PubMed  PubMed Central  Google Scholar 

  38. Adjeiwaah M, Bylund M, Lundman JA, et al. Quantifying the effect of 3T magnetic resonance imaging residual system distortions and patient-induced susceptibility distortions on radiation therapy treatment planning for prostate cancer. Int J Radiat Oncol. 2018;100:317–24.

    Google Scholar 

  39. Tadic T, Jaffray DA, Stanescu T. Harmonic analysis for the characterization and correction of geometric distortion in MRI. Med Phys. 2014;41:112303.

    PubMed  Google Scholar 

  40. Janke A, Zhao H, Cowin GJ, et al. Use of spherical harmonic deconvolution methods to compensate for nonlinear gradient effects on MRI images. Magn Reson Med. 2004;52:115–22.

    PubMed  Google Scholar 

  41. Caramanos Z, Fonov VS, Francis SJ, et al. Gradient distortions in MRI: characterizing and correcting for their effects on SIENA-generated measures of brain volume change. NeuroImage. 2010;49:1601–11.

    PubMed  Google Scholar 

  42. Maikusa N, Yamashita F, Tanaka K, et al. Improved volumetric measurement of brain structure with a distortion correction procedure using an ADNI phantom. Med Phys. 2013;40:062303.

    PubMed  Google Scholar 

  43. Pappas EP, Seimenis I, Moutsatsos A, et al. Characterization of system-related geometric distortions in MR images employed in Gamma Knife radiosurgery applications. Phys Med Biol. 2016;61:6993–7011.

    CAS  PubMed  Google Scholar 

  44. Baldwin LN, Wachowicz K, Thomas SD, et al. Characterization, prediction, and correction of geometric distortion in 3T MR images. Med Phys. 2007;34:388–99.

    PubMed  Google Scholar 

  45. Schenck J. The role of magnetic susceptibility in magnetic resonance imaging: MRI magnetic compatibility of the first and second kinds. Med Phys. 1996;23:815–50.

    CAS  PubMed  Google Scholar 

  46. De Deene Y. Fundamentals of MRI measurements for gel dosimetry. J Phys Conf Ser. 2004;3:87–114.

    Google Scholar 

  47. De Deene Y. Review of quantitative MRI principles for gel dosimetry. J Phys Conf Ser. 2009;164:012033.

    Google Scholar 

  48. Pappas EP, Seimenis I, Dellios D, et al. Assessment of sequence dependent geometric distortion in contrast-enhanced MR images employed in stereotactic radiosurgery treatment planning. Phys Med Biol. 2018;63:135006.

    PubMed  Google Scholar 

  49. Stanescu T, Wachowicz K, Jaffray DA. Characterization of tissue magnetic susceptibility-induced distortions for MRIgRT. Med Phys. 2012;39:7185–93.

    CAS  PubMed  Google Scholar 

  50. Bley TA, Wieben O, Francois CJ, et al. Fat and water magnetic resonance imaging. J Magn Reson Imaging. 2010;31:4–18.

    PubMed  Google Scholar 

  51. De Deene Y, De Wagter C. Artefacts in multi-echo T2 imaging for high-precision gel dosimetry: III. Effects of temperature drift during scanning. Phys Med Biol. 2001;46:2697–711.

    PubMed  Google Scholar 

  52. Hijnen NM, Elevelt A, Pikkemaat J, et al. The magnetic susceptibility effect of gadolinium-based contrast agents on PRFS-based MR thermometry during thermal interventions. J Ther Ultrasound. 2013;1:8.

    PubMed  PubMed Central  Google Scholar 

  53. Moutsatsos A, Karaiskos P, Petrokokkinos L, et al. Assessment and characterization of the total geometric uncertainty in Gamma Knife radiosurgery using polymer gels. Med Phys. 2013;40:031704.

    CAS  PubMed  Google Scholar 

  54. Wang D, Strugnell W, Cowin G, et al. Geometric distortion in clinical MRI systems: part I: evaluation using a 3D phantom. Magn Reson Imaging. 2004;22:1211–21.

    PubMed  Google Scholar 

  55. Stanescu T, Jans HS, Wachowicz K, Gino Fallone B. Investigation of a 3D system distortion correction method for MR images. J Appl Clin Med Phys. 2010;11:200–16.

    PubMed Central  Google Scholar 

  56. Damyanovich AZ, Rieker M, Zhang B, et al. Design and implementation of a 3D-MR/CT geometric image distortion phantom/analysis system for stereotactic radiosurgery. Phys Med Biol. 2018;63:075010.

    CAS  PubMed  Google Scholar 

  57. Chang H, Fitzpatrick JM. A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities. IEEE Trans Med Imaging. 1992;11:319–29.

    CAS  PubMed  Google Scholar 

  58. Maurer CR, Aboutanos GB, Dawant BM, et al. Technical note. Effect of geometrical distortion correction in MR on image registration accuracy. J Comput Assist Tomogr. 1996;20:666–79.

    PubMed  Google Scholar 

  59. Jezzard P, Balaban RS. Correction for geometric distortion in echo planar images from B0 field variations. Magn Reson Med. 1995;34:65–73.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Evangelos Pantelis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Pappas, E.P., Pantelis, E. (2020). Morphological Imaging. In: Conti, A., Romanelli, P., Pantelis, E., Soltys, S., Cho, Y., Lim, M. (eds) CyberKnife NeuroRadiosurgery . Springer, Cham. https://doi.org/10.1007/978-3-030-50668-1_8

Download citation

Publish with us

Policies and ethics