Skip to main content

Skull Base Meningiomas

  • Chapter
  • First Online:
CyberKnife NeuroRadiosurgery

Abstract

Surgical excision is the treatment of choice for accessible skull base meningiomas. Nevertheless, a significant subset of complex tumors tightly attached to or encasing neurovascular structures cannot be removed safely. In such patients with residual or progressing disease after incomplete tumor resection, adjuvant external beam radiation therapy (RT) has been traditionally employed with a reported tumor local control up to 90% at 10 years. In the last decades, RT has evolved with the development of conformal and stereotactic techniques with dramatic technical advances in all aspects of treatment with better immobilization, imaging, planning, and treatment. Advanced radio-oncology techniques include intensity-modulated radiotherapy (IMRT), volumetric arc therapy (VMAT), and stereotactic radiotherapy (SRT) and radiosurgery (SRS) which allow for more precise dose delivery to the tumor while limiting the amount of radiation to the sensitive brain structures, i.e., the optic pathway and the brainstem. New radiation techniques, particularly SRS, have progressively emerged as an effective primary treatment of selected meningiomas of the skull base. Large series report local control rates of more than 90% at 5 years following SRS, which remain above 80% at 10–15 years. Although virtually noninvasive, SRS carries a risk of radiation-induced late toxicity, typically cranial nerve deficits causing impaired visual acuity and ocular motility. For patients with large skull base meningiomas or with tumors in close proximity to the optic pathway, fractionated SRS (2–5 fractions) has emerged as an alternative to single-fraction SRS with the hope of reducing the long-term consequences of treatment while maintaining its effectiveness. Currently, SRT and SRS are an essential part of the modern management of skull base meningiomas recurring after surgery or located at difficult accessibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cusimano M, Sekhar L, Sen C, et al. The results of surgery for benign tumors of the cavernous sinus. Neurosurgery. 1995;37:1–9.

    CAS  PubMed  Google Scholar 

  2. Kallio M, Sankila R, Hakulinen T, Jaaskelainen J. Factors affecting operative and excess long-term mortality in 935 patients with intracranial meningioma. Neurosurgery. 1992;31:2–12.

    CAS  PubMed  Google Scholar 

  3. Goldsmith B, Wara W, Wilson C, Larson D. Postoperative irradiation for subtotally resected meningiomas. J Neurosurg. 1994;80:195–201.

    CAS  PubMed  Google Scholar 

  4. Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL. Meningioma: analysis of recurrence and progression following neurosurgical resection. J Neurosurg. 1985;62(1):18–24.

    CAS  PubMed  Google Scholar 

  5. Stafford S, Pollock B, Foote R, et al. Meningioma radiosurgery: tumor control, outcomes, and complications among 190 consecutive patients. Neurosurgery. 2001;49:1029–37.

    CAS  PubMed  Google Scholar 

  6. Soyuer S, Chang EL, Selek U, Shi W, Maor MH, DeMonte F. Radiotherapy after surgery for benign cerebral meningioma. Radiother Oncol. 2004;71(1):85–90.

    PubMed  Google Scholar 

  7. Taylor BW Jr, Marcus RB Jr, Friedman WA, Ballinger WE Jr, Million RR. The meningioma controversy: postoperative radiation therapy. Int J Radiat Oncol Biol Phys. 1988;15(2):299–304.

    PubMed  Google Scholar 

  8. Seung SK, Larson DA, Galvin JM, et al. American College of Radiology (ACR) and American Society for Radiation Oncology (ASTRO) practice guideline for the performance of stereotactic radiosurgery (SRS). Am J Clin Oncol. 2013;36(3):310–5.

    PubMed  PubMed Central  Google Scholar 

  9. Albano L, Losa M, Flickinger J, Mortini P, Minniti G. Radiotherapy of parasellar tumours. Neuroendocrinology. 2020.

    Google Scholar 

  10. Barbaro N, Gutin P, Wilson C, Sheline G, Boldrey E, Wara W. Radiation therapy in the treatment of partially resected meningiomas. Neurosurgery. 1987;20:525–8.

    CAS  PubMed  Google Scholar 

  11. Brell M, Villa S, Teixidor P, et al. Fractionated stereotactic radiotherapy in the treatment of exclusive cavernous sinus meningioma: functional outcome, local control, and tolerance. Surg Neurol. 2006;65:28–33.

    PubMed  Google Scholar 

  12. Carella R, Ransohoff J, Newall J. Role of radiation therapy in the management of meningioma. Neurosurgery. 1982;10:332–9.

    CAS  PubMed  Google Scholar 

  13. Forbes A, Goldberg I. Radiation therapy in the treatment of meningioma: the Joint Center for Radiation Therapy experience 1970 to 1982. J Clin Oncol. 1984;2:1139–43.

    CAS  PubMed  Google Scholar 

  14. Maire J, Caudry M, Guerin J, et al. Fractionated radiation therapy in the treatment of intracranial meningiomas: local control, functional efficacy, and tolerance in 91 patients. Int J Radiat Oncol Biol Phys. 1995;33:315–21.

    CAS  PubMed  Google Scholar 

  15. Metellus P, Regis J, Muracciole X, et al. Evaluation of fractionated radiotherapy and gamma knife radiosurgery in cavernous sinus meningiomas: treatment strategy. Neurosurgery. 2005;57:873–86.

    PubMed  Google Scholar 

  16. Milker-Zabel S, Zabel A, Schulz-Ertner D, Schlegel W, Wannenmacher M, Debus J. Fractionated stereotactic radiotherapy in patients with benign or atypical intracranial meningioma: long-term experience and prognostic factors. Int J Radiat Oncol Biol Phys. 2005;61:809–16.

    PubMed  Google Scholar 

  17. Miralbell R, Linggood R, de la Monte S, Convery K, Munzenrider J, Mirimanoff R. The role of radiotherapy in the treatment of subtotally resected benign meningiomas. J Neurooncol. 1992;13:157–64.

    CAS  PubMed  Google Scholar 

  18. Nutting C, Brada M, Brazil L, et al. Radiotherapy in the treatment of benign meningioma of the skull base. J Neurosurg. 1999;90:823–7.

    CAS  PubMed  Google Scholar 

  19. Peele K, Kennerdell J, Maroon J, et al. The role of postoperative irradiation in the management of sphenoid wing meningiomas. Ophthalmology. 1996;103:1761–6.

    CAS  PubMed  Google Scholar 

  20. Vendrely V, Maire J, Darrouzet V, et al. [Fractionated radiotherapy of intracranial meningiomas: 15 years’ experience at the Bordeaux University Hospital Center]. Cancer Radiother. 1999;3:311–317.

    Google Scholar 

  21. Mendenhall W, Morris C, Amdur R, Foote K, Friedman W. Radiotherapy alone or after subtotal resection for benign skull base meningiomas. Cancer. 2003;98:1473–82.

    PubMed  Google Scholar 

  22. Henzel M, Gross M, Hamm K, Surber G, Kleinert G, Failing T. Stereotactic radiotherapy of meningiomas: symptomatology, acute and late toxicity. Strahlenther Onkol. 2006;182:382–8.

    PubMed  Google Scholar 

  23. Tanzler E, Morris CG, Kirwan JM, Amdur RJ, Mendenhall WM. Outcomes of WHO grade I meningiomas receiving definitive or postoperative radiotherapy. Int J Radiat Oncol Biol Phys. 2011;79(2):508–13.

    PubMed  Google Scholar 

  24. Minniti G, Clarke E, Cavallo L, Osti M, Esposito V, Cantore G. Fractionated stereotactic conformal radiotherapy for large benign skull base meningiomas. Radiat Oncol. 2011;6:36.

    PubMed  PubMed Central  Google Scholar 

  25. Slater JD, Loredo LN, Chung A, et al. Fractionated proton radiotherapy for benign cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys. 2012;83(5):e633–7.

    PubMed  Google Scholar 

  26. Weber DC, Schneider R, Goitein G, et al. Spot scanning-based proton therapy for intracranial meningioma: long-term results from the Paul Scherrer Institute. Int J Radiat Oncol Biol Phys. 2012;83(3):865–71.

    PubMed  Google Scholar 

  27. Solda F, Wharram B, De Ieso PB, Bonner J, Ashley S, Brada M. Long-term efficacy of fractionated radiotherapy for benign meningiomas. Radiother Oncol. 2013;109(2):330–4.

    PubMed  Google Scholar 

  28. Combs SE, Adeberg S, Dittmar JO, et al. Skull base meningiomas: long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol. 2013;106(2):186–91.

    PubMed  Google Scholar 

  29. Fokas E, Henzel M, Surber G, Hamm K, Engenhart-Cabillic R. Stereotactic radiation therapy for benign meningioma: long-term outcome in 318 patients. Int J Radiat Oncol Biol Phys. 2014;89(3):569–75.

    PubMed  Google Scholar 

  30. Kuo JS, Yu C, Petrovich Z, Apuzzo ML. The CyberKnife stereotactic radiosurgery system: description, installation, and an initial evaluation of use and functionality. Neurosurgery. 2003;53(5):1235–9; discussion 1239.

    PubMed  Google Scholar 

  31. Keeling V, Algan O, Ahmad S, Hossain S. Dosimetric comparison of intracranial metastasis treatment using two radiosurgery systems: TrueBeam STx with VMAT and gamma knife model 4C. J Radiosurg SBRT. 2016;4(3):235–43.

    PubMed  PubMed Central  Google Scholar 

  32. Connell P, Macdonald R, Mansur D, Nicholas M, Mundt A. Tumor size predicts control of benign meningiomas treated with radiotherapy. Neurosurgery. 1999;44:1194–9.

    CAS  PubMed  Google Scholar 

  33. Condra KS, Buatti JM, Mendenhall WM, Friedman WA, Marcus RB Jr, Rhoton AL. Benign meningiomas: primary treatment selection affects survival. Int J Radiat Oncol Biol Phys. 1997;39(2):427–36.

    CAS  PubMed  Google Scholar 

  34. Pirzkall A, Debus J, Haering P, et al. Intensity modulated radiotherapy (IMRT) for recurrent, residual, or untreated skull-base meningiomas: preliminary clinical experience. Int J Radiat Oncol Biol Phys. 2003;55:362–72.

    PubMed  Google Scholar 

  35. Glaholm J, Bloom HJ, Crow JH. The role of radiotherapy in the management of intracranial meningiomas: the Royal Marsden Hospital experience with 186 patients. Int J Radiat Oncol Biol Phys. 1990;18(4):755–61.

    CAS  PubMed  Google Scholar 

  36. Crossen J, Garwood D, Glatstein E, Neuwelt E. Neurobehavioral sequelae of cranial irradiation in adults: a review of radiation-induced encephalopathy. J Clin Oncol. 1994;12:627–42.

    CAS  PubMed  Google Scholar 

  37. Dufour H, Muracciole X, Metellus P, Regis J, Chinot O, Grisoli F. Long-term tumor control and functional outcome in patients with cavernous sinus meningiomas treated by radiotherapy with or without previous surgery: is there an alternative to aggressive tumor removal? Neurosurgery. 2001;48:285–94.

    CAS  PubMed  Google Scholar 

  38. Maguire P, Clough R, Friedman A, Halperin E. Fractionated external-beam radiation therapy for meningiomas of the cavernous sinus. Int J Radiat Oncol Biol Phys. 1999;44:75–9.

    CAS  PubMed  Google Scholar 

  39. Minniti G, Traish D, Ashley S, Gonsalves A, Brada M. Risk of second brain tumor after conservative surgery and radiotherapy for pituitary adenoma: update after an additional 10 years. J Clin Endocrinol Metab. 2005;90:800–4.

    CAS  PubMed  Google Scholar 

  40. Minniti G, Valeriani M, Clarke E, et al. Fractionated stereotactic radiotherapy for skull base tumors: analysis of treatment accuracy using a stereotactic mask fixation system. Radiat Oncol. 2010;5:1.

    PubMed  PubMed Central  Google Scholar 

  41. Minniti G, Clarke E, Lanzetta G, et al. Stereotactic radiosurgery for brain metastases: analysis of outcome and risk of brain radionecrosis. Radiat Oncol. 2011;6:48.

    PubMed  PubMed Central  Google Scholar 

  42. Sajja R, Barnett G, Lee S, et al. Intensity-modulated radiation therapy (IMRT) for newly diagnosed and recurrent intracranial meningiomas: preliminary results. Technol Cancer Res Treat. 2005;4:675–82.

    PubMed  Google Scholar 

  43. Uy N, Woo S, Teh B, et al. Intensity-modulated radiation therapy (IMRT) for meningioma. Int J Radiat Oncol Biol Phys. 2002;53:1265–70.

    PubMed  Google Scholar 

  44. Amichetti M, Amelio D, Minniti G. Radiosurgery with photons or protons for benign and malignant tumours of the skull base: a review. Radiat Oncol. 2012;7:210.

    PubMed  PubMed Central  Google Scholar 

  45. Halasz LM, Bussiere MR, Dennis ER, et al. Proton stereotactic radiosurgery for the treatment of benign meningiomas. Int J Radiat Oncol Biol Phys. 2011;81(5):1428–35.

    PubMed  Google Scholar 

  46. Noel G, Bollet MA, Calugaru V, et al. Functional outcome of patients with benign meningioma treated by 3D conformal irradiation with a combination of photons and protons. Int J Radiat Oncol Biol Phys. 2005;62(5):1412–22.

    PubMed  Google Scholar 

  47. Wenkel E, Thornton A, Finkelstein D, et al. Benign meningioma: partially resected, biopsied, and recurrent intracranial tumors treated with combined proton and photon radiotherapy. Int J Radiat Oncol Biol Phys. 2000;48:1363–70.

    CAS  PubMed  Google Scholar 

  48. Chang SD, Adler JR. Treatment of cranial base meningiomas with linear accelerator radiosurgery. Neurosurgery. 1997;41(5):1019–27.

    CAS  PubMed  Google Scholar 

  49. Gevaert T, Verellen D, Tournel K, et al. Setup accuracy of the Novalis ExacTrac 6DOF system for frameless radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):1627–35.

    PubMed  Google Scholar 

  50. Lamba M, Breneman JC, Warnick RE. Evaluation of image-guided positioning for frameless intracranial radiosurgery. Int J Radiat Oncol Biol Phys. 2009;74(3):913–9.

    PubMed  Google Scholar 

  51. Wurm RE, Erbel S, Schwenkert I, et al. Novalis frameless image-guided noninvasive radiosurgery: initial experience. Neurosurgery. 2008;62(5 Suppl):A11–7; discussion A17–18.

    PubMed  Google Scholar 

  52. Kim H, Potrebko P, Rivera A, et al. Tumor volume threshold for achieving improved conformity in VMAT and gamma knife stereotactic radiosurgery for vestibular schwannoma. Radiother Oncol. 2015;115(2):229–34.

    PubMed  Google Scholar 

  53. Colombo F, Casentini L, Cavedon C, Scalchi P, Cora S, Francescon P. Cyberknife radiosurgery for benign meningiomas: short-term results in 199 patients. Neurosurgery. 2009;64(2 Suppl):A7–13.

    PubMed  Google Scholar 

  54. Kreil W, Luggin J, Fuchs I, Weigl V, Eustacchio S, Papaefthymiou G. Long term experience of gamma knife radiosurgery for benign skull base meningiomas. J Neurol Neurosurg Psychiatry. 2005;76:1425–30.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Feigl GC, Samii M, Horstmann GA. Volumetric follow-up of meningiomas: a quantitative method to evaluate treatment outcome of gamma knife radiosurgery. Neurosurgery. 2007;61(2):281–6; discussion 286–287.

    PubMed  Google Scholar 

  56. Skeie BS, Enger PO, Skeie GO, Thorsen F, Pedersen PH. Gamma knife surgery of meningiomas involving the cavernous sinus: long-term follow-up of 100 patients. Neurosurgery. 2010;66(4):661–8; discussion 668–669.

    PubMed  Google Scholar 

  57. Pollock B, Stafford S, Link M, Garces Y, Foote R. Single-fraction radiosurgery for presumed intracranial meningiomas: efficacy and complications from a 22-year experience. Int J Radiat Oncol Biol Phys. 2012;83:1414–8.

    PubMed  Google Scholar 

  58. Santacroce A, Walier M, Regis J, et al. Long-term tumor control of benign intracranial meningiomas after radiosurgery in a series of 4565 patients. Neurosurgery. 2012;70(1):32–9; discussion 39.

    PubMed  Google Scholar 

  59. Starke R, Kano H, Ding D, et al. Stereotactic radiosurgery of petroclival meningiomas: a multicenter study. J Neurooncol. 2014;119(1):169–76.

    PubMed  Google Scholar 

  60. Ding D, Starke RM, Kano H, et al. Gamma knife radiosurgery for cerebellopontine angle meningiomas: a multicenter study. Neurosurgery. 2014;75(4):398–408; quiz 408.

    PubMed  Google Scholar 

  61. Kondziolka D, Mathieu D, Lunsford L, et al. Radiosurgery as definitive management of intracranial meningiomas. Neurosurgery. 2008;62:53–8.

    PubMed  Google Scholar 

  62. Pannullo SC, Fraser JF, Moliterno J, Cobb W, Stieg PE. Stereotactic radiosurgery: a meta-analysis of current therapeutic applications in neuro-oncologic disease. J Neurooncol. 2011;103(1):1–17.

    PubMed  Google Scholar 

  63. Ganz J, Reda W, Abdelkarim K. Gamma knife surgery of large meningiomas: early response to treatment. Acta Neurochir. 2009;151:1–8.

    CAS  PubMed  Google Scholar 

  64. Kollova A, Liscak R, Novotny J, Vladyka V, Simonova G, Janouskova L. Gamma Knife surgery for benign meningioma. J Neurosurg. 2007;107:325–36.

    PubMed  Google Scholar 

  65. Minniti G, Amichetti M, Enrici RM. Radiotherapy and radiosurgery for benign skull base meningiomas. Radiat Oncol. 2009;4:42.

    PubMed  PubMed Central  Google Scholar 

  66. DiBiase S, Kwok Y, Yovino S, et al. Factors predicting local tumor control after gamma knife stereotactic radiosurgery for benign intracranial meningiomas. Int J Radiat Oncol Biol Phys. 2004;60:1515–9.

    PubMed  Google Scholar 

  67. Nicolato A, Foroni R, Alessandrini F, Maluta S, Bricolo A, Gerosa M. The role of gamma knife radiosurgery in the management of cavernous sinus meningiomas. Int J Radiat Oncol Biol Phys. 2002;53:992–1000.

    PubMed  Google Scholar 

  68. Morita A, Coffey R, Foote R, Schiff D, Gorman D. Risk of injury to cranial nerves after gamma knife radiosurgery for skull base meningiomas: experience in 88 patients. J Neurosurg. 1999;90:42–9.

    CAS  PubMed  Google Scholar 

  69. Novotny J, Kollova A, Liscak R. Prediction of intracranial edema after radiosurgery of meningiomas. J Neurosurg. 2006;105(Suppl):120–6.

    PubMed  Google Scholar 

  70. Emami B, Lyman J, Brown A, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    CAS  PubMed  Google Scholar 

  71. Lawrence YR, Li XA, el Naqa I, et al. Radiation dose-volume effects in the brain. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S20–7.

    PubMed  PubMed Central  Google Scholar 

  72. Marks LB, Yorke ED, Jackson A, et al. Use of normal tissue complication probability models in the clinic. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S10–9.

    PubMed  PubMed Central  Google Scholar 

  73. Minniti G, Osti MF, Niyazi M. Target delineation and optimal radiosurgical dose for pituitary tumors. Radiat Oncol. 2016;11(1):135.

    PubMed  PubMed Central  Google Scholar 

  74. Timmerman RD. An overview of hypofractionation and introduction to this issue of seminars in radiation oncology. Semin Radiat Oncol. 2008;18(4):215–22.

    PubMed  Google Scholar 

  75. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.

    PubMed  Google Scholar 

  76. Pollock BE, Link MJ, Leavitt JA, Stafford SL. Dose-volume analysis of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Neurosurgery. 2014;75(4):456–60.

    PubMed  Google Scholar 

  77. Sicignano G, Losa M, del Vecchio A, et al. Dosimetric factors associated with pituitary function after gamma knife surgery (GKS) of pituitary adenomas. Radiother Oncol. 2012;104(1):119–24.

    PubMed  Google Scholar 

  78. Leenstra JL, Tanaka S, Kline RW, et al. Factors associated with endocrine deficits after stereotactic radiosurgery of pituitary adenomas. Neurosurgery. 2010;67(1):27–32; discussion 32–3.

    PubMed  Google Scholar 

  79. Marek J, Ježková J, Hána V, et al. Is it possible to avoid hypopituitarism after irradiation of pituitary adenomas by the Leksell gamma knife? Eur J Endocrinol. 2011;164(2):169–78.

    CAS  PubMed  Google Scholar 

  80. Kirkpatrick JP, Marks LB, Mayo CS, Lawrence YR, Bhandare N, Ryu S. Estimating normal tissue toxicity in radiosurgery of the CNS: application and limitations of QUANTEC. J Radiosurg SBRT. 2011;1(2):95–107.

    PubMed  PubMed Central  Google Scholar 

  81. Leavitt JA, Stafford SL, Link MJ, Pollock BE. Long-term evaluation of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2013;87(3):524–7.

    PubMed  Google Scholar 

  82. Leber KA, Bergloff J, Langmann G, Mokry M, Schrottner O, Pendl G. Radiation sensitivity of visual and oculomotor pathways. Stereotact Funct Neurosurg. 1995;64(Suppl 1):233–8.

    PubMed  Google Scholar 

  83. Tishler RB, Loeffler JS, Lunsford LD, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.

    CAS  PubMed  Google Scholar 

  84. Sheehan JP, Starke RM, Kano H, et al. Gamma knife radiosurgery for sellar and parasellar meningiomas: a multicenter study. J Neurosurg. 2014;120(6):1268–77.

    PubMed  Google Scholar 

  85. Combs S, Adeberg S, Dittmar J, Welzel T, Rieken S, Habermehl D. Skull base meningiomas: long-term results and patient self-reported outcome in 507 patients treated with fractionated stereotactic radiotherapy (FSRT) or intensity modulated radiotherapy (IMRT). Radiother Oncol. 2013;106(2):186–91.

    PubMed  Google Scholar 

  86. Debus J, Wuendrich M, Pirzkall A, et al. High efficacy of fractionated stereotactic radiotherapy of large base-of-skull meningiomas: long-term results. J Clin Oncol. 2001;19:3547–53.

    CAS  PubMed  Google Scholar 

  87. Hamm K, Henzel M, Gross M, Surber G, Kleinert G, Engenhart-Cabillic R. Radiosurgery/stereotactic radiotherapy in the therapeutical concept for skull base meningiomas. Zentralbl Neurochir. 2008;69:14–21.

    CAS  PubMed  Google Scholar 

  88. Henzel M, Gross M, Hamm K, et al. Significant tumor volume reduction of meningiomas after stereotactic radiotherapy: results of a prospective multicenter study. Neurosurgery. 2006;59:1188–94.

    PubMed  Google Scholar 

  89. Kirkpatrick JP, Soltys SG, Lo SS, Beal K, Shrieve DC, Brown PD. The radiosurgery fractionation quandary: single fraction or hypofractionation? Neuro Oncol. 2017;19(suppl_2):ii38–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  90. Chang SD, Adler JR. Robotics and radiosurgery—the cyberknife. Stereotact Funct Neurosurg. 2001;76(3–4):204–8.

    CAS  PubMed  Google Scholar 

  91. Shrieve DC. Basic principles of radiobiology applied to radiotherapy of benign intracranial tumors. Neurosurg Clin N Am. 2006;17(2):67–78, v.

    PubMed  Google Scholar 

  92. Bria C, Wegner RE, Clump DA, et al. Fractionated stereotactic radiosurgery for the treatment of meningiomas. J Cancer Res Ther. 2011;7(1):52–7.

    PubMed  Google Scholar 

  93. Marchetti M, Bianchi S, Pinzi V, et al. Multisession radiosurgery for sellar and parasellar benign meningiomas: long-term tumor growth control and visual outcome. Neurosurgery. 2016;78(5):638–46.

    PubMed  Google Scholar 

  94. Adler JR Jr, Gibbs IC, Puataweepong P, Chang SD. Visual field preservation after multisession cyberknife radiosurgery for perioptic lesions. Neurosurgery. 2006;59(2):244–54; discussion 244–254.

    PubMed  Google Scholar 

  95. Conti A, Pontoriero A, Midili F, et al. CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations. Springerplus. 2015;4:37.

    PubMed  PubMed Central  Google Scholar 

  96. Marchetti M, Conti A, Beltramo G, et al. Multisession radiosurgery for perioptic meningiomas: medium-to-long term results from a CyberKnife cooperative study. J Neurooncol. 2019;143(3):597–604.

    PubMed  Google Scholar 

  97. Tuniz F, Soltys SG, Choi CY, et al. Multisession cyberknife stereotactic radiosurgery of large, benign cranial base tumors: preliminary study. Neurosurgery. 2009;65(5):898–907; discussion 907.

    PubMed  Google Scholar 

  98. Han J, Girvigian MR, Chen JC, et al. A comparative study of stereotactic radiosurgery, hypofractionated, and fractionated stereotactic radiotherapy in the treatment of skull base meningioma. Am J Clin Oncol. 2014;37(3):255–60.

    PubMed  Google Scholar 

  99. Combs SE, Farzin M, Boehmer J, et al. Clinical outcome after high-precision radiotherapy for skull base meningiomas: pooled data from three large German centers for radiation oncology. Radiother Oncol. 2018;127(2):274–9.

    PubMed  Google Scholar 

  100. Alfredo C, Carolin S, Guliz A, et al. Normofractionated stereotactic radiotherapy versus CyberKnife-based hypofractionation in skull base meningioma: a German and Italian pooled cohort analysis. Radiat Oncol. 2019;14(1):201.

    PubMed  PubMed Central  Google Scholar 

  101. Fatima N, Meola A, Pollom EL, Soltys SG, Chang SD. Stereotactic radiosurgery versus stereotactic radiotherapy in the management of intracranial meningiomas: a systematic review and meta-analysis. Neurosurg Focus. 2019;46(6):E2.

    PubMed  Google Scholar 

  102. Goldbrunner R, Minniti G, Preusser M, et al. EANO guidelines for the diagnosis and treatment of meningiomas. Lancet Oncol. 2016;17(9):e383–91.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minniti, G., Conti, A., Pontoriero, A. (2020). Skull Base Meningiomas. In: Conti, A., Romanelli, P., Pantelis, E., Soltys, S., Cho, Y., Lim, M. (eds) CyberKnife NeuroRadiosurgery . Springer, Cham. https://doi.org/10.1007/978-3-030-50668-1_19

Download citation

Publish with us

Policies and ethics