Skip to main content

Organs at Risk (OAR) Tolerance in Hypofractionated Radiosurgery

  • Chapter
  • First Online:
CyberKnife NeuroRadiosurgery
  • 706 Accesses

Abstract

For CyberKnife radiosurgery, the precise interpretation of the normal probability of tissue complications (NTCP) is extremely important due to the reverse planning algorithm and the non-isocentric irradiation geometry adopted by the system, which requires the setting of dose constraints for any organ at risk (OAR). Despite eight decades of practice in radiation therapy, the current understanding of radiobiology remains fairly imprecise, especially the tolerance limits of OAR at hypofractionated schedules. Here, we provide an overview of the radiation tolerance limits of the optic pathway, spinal cord, brain, and other central nervous system OARs. Above all, we summarize the basic principles of radiobiology and describe how these can be used to aid decision making for hypofractionated treatments. Basically, we provide radiobiological bases to build models that can be used to safely and effectively extrapolate the doses to be delivered in hypofractioned schedules, starting from single fraction clinical data and conventionally fractionated radiotherapy. Although this approach has several limitations, it can provide some practical suggestions and help users to increase confidence with hypofractionated approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin P, Casarett GW. Clinical radiation pathology as applied to curative radiotherapy. Cancer. 1968;22(4):767–78.

    CAS  PubMed  Google Scholar 

  2. Jeganathan VS, Wirth A, MacManus MP. Ocular risks from orbital and periorbital radiation therapy: a critical review. Int J Radiat Oncol Biol Phys. 2011;79(3):650–9.

    PubMed  Google Scholar 

  3. Tishler RB, Loeffler JS, Lunsford LD, Duma C, Alexander E, Kooy HM, et al. Tolerance of cranial nerves of the cavernous sinus to radiosurgery. Int J Radiat Oncol Biol Phys. 1993;27(2):215–21.

    CAS  PubMed  Google Scholar 

  4. Leber KA, Berglöff J, Pendl G. Dose—response tolerance of the visual pathways and cranial nerves of the cavernous sinus to stereotactic radiosurgery. J Neurosurg. 1998;88(1):43–50.

    CAS  PubMed  Google Scholar 

  5. Mayo C, Martel MK, Marks LB, Flickinger J, Nam J, Kirkpatrick J. Radiation dose–volume effects of optic nerves and chiasm. Int J Radiat Oncol Biol Phys. 2010;76(3):S28–35.

    PubMed  Google Scholar 

  6. Hasegawa T, Kida Y, Yoshimoto M, Iizuka H, Ishii D, Yoshida K. Gamma knife surgery for convexity, parasagittal, and falcine meningiomas. J Neurosurg. 2011;114(5):1392–8.

    PubMed  Google Scholar 

  7. Leavitt JA, Stafford SL, Link MJ, Pollock BE. Long-term evaluation of radiation-induced optic neuropathy after single-fraction stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2013;87(3):524–7.

    PubMed  Google Scholar 

  8. Leber KA, Bergloff J, Langmann G, Mokry M, Schrottner O, Pendl G. Radiation sensitivity of visual and oculomotor pathways. Stereotact Funct Neurosurg. 1995;64(Suppl 1):233–8.

    PubMed  Google Scholar 

  9. Stafford SL, Pollock BE, Leavitt JA, Foote RL, Brown PD, Link MJ, et al. A study on the radiation tolerance of the optic nerves and chiasm after stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2003;55(5):1177–81.

    PubMed  Google Scholar 

  10. Conti A, Pontoriero A, Midili F, Iati G, Siragusa C, Tomasello C, et al. CyberKnife multisession stereotactic radiosurgery and hypofractionated stereotactic radiotherapy for perioptic meningiomas: intermediate-term results and radiobiological considerations. Springerplus. 2015;4:37.

    PubMed  PubMed Central  Google Scholar 

  11. Marchetti M, Conti A, Beltramo G, Pinzi V, Pontoriero A, Tramacere I, et al. Multisession radiosurgery for perioptic meningiomas: medium-to-long term results from a CyberKnife cooperative study. J Neuro-Oncol. 2019;143(3):597–604.

    Google Scholar 

  12. Puataweepong P, Dhanachai M, Hansasuta A, Dangprasert S, Sitathanee C, Ruangkanchanasetr R, et al. Clinical outcomes of perioptic tumors treated with hypofractionated stereotactic radiotherapy using CyberKnife(R) stereotactic radiosurgery. J Neuro-Oncol. 2018;139(3):679–88.

    Google Scholar 

  13. Astrahan M. Some implications of linear-quadratic-linear radiation dose-response with regard to hypofractionation. Med Phys. 2008;35(9):4161–72.

    PubMed  Google Scholar 

  14. Emami B, Lyman J, Brown A, Coia L, Goitein M, Munzenrider JE, et al. Tolerance of normal tissue to therapeutic irradiation. Int J Radiat Oncol Biol Phys. 1991;21(1):109–22.

    CAS  PubMed  Google Scholar 

  15. Goldsmith BJ, Rosenthal SA, Wara WM, Larson DA. Optic neuropathy after irradiation of meningioma. Radiology. 1992;185(1):71–6.

    CAS  PubMed  Google Scholar 

  16. Lyman JT. Complication probability as assessed from dose-volume histograms. Radiat Res Suppl. 1985;8:S13–9.

    CAS  PubMed  Google Scholar 

  17. Kutcher GJ, Burman C. Calculation of complication probability factors for non-uniform normal tissue irradiation: the effective volume method. Int J Radiat Oncol Biol Phys. 1989;16(6):1623–30.

    CAS  PubMed  Google Scholar 

  18. Burman C, Kutcher GJ, Emami B, Goitein M. Fitting of normal tissue tolerance data to an analytic function. Int J Radiat Oncol Biol Phys. 1991;21(1):123–35.

    CAS  PubMed  Google Scholar 

  19. Burman CM. Fitting of tissue tolerance data to analytic function: improving the therapeutic ratio. Front Radiat Ther Oncol. 2002;37:151–62.

    PubMed  Google Scholar 

  20. Kutcher GJ. Quantitative plan evaluation: TCP/NTCP models. Front Radiat Ther Oncol. 1996;29:67–80.

    CAS  PubMed  Google Scholar 

  21. Lyman JT, Wolbarst AB. Optimization of radiation therapy, III: a method of assessing complication probabilities from dose-volume histograms. Int J Radiat Oncol Biol Phys. 1987;13(1):103–9.

    CAS  PubMed  Google Scholar 

  22. Lyman JT, Wolbarst AB. Optimization of radiation therapy, IV: a dose-volume histogram reduction algorithm. Int J Radiat Oncol Biol Phys. 1989;17(2):433–6.

    CAS  PubMed  Google Scholar 

  23. Schultheiss TE. The radiation dose-response of the human spinal cord. Int J Radiat Oncol Biol Phys. 2008;71(5):1455–9.

    PubMed  Google Scholar 

  24. Schultheiss TE, Thames HD, Peters LJ, Dixon DO. Effect of latency on calculated complication rates. Int J Radiat Oncol Biol Phys. 1986;12(10):1861–5.

    CAS  PubMed  Google Scholar 

  25. McCunniff AJ, Liang MJ. Radiation tolerance of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1989;16(3):675–8.

    CAS  PubMed  Google Scholar 

  26. Abbatucci JS, Delozier T, Quint R, Roussel A, Brune D. Radiation myelopathy of the cervical spinal cord: time, dose and volume factors. Int J Radiat Oncol Biol Phys. 1978;4(3–4):239–48.

    CAS  PubMed  Google Scholar 

  27. Atkins HL, Tretter P. Time-dose considerations in radiation myelopathy. Acta Radiol Ther Phys Biol. 1966;5:79–94.

    CAS  PubMed  Google Scholar 

  28. Marcus RB Jr, Million RR. The incidence of myelitis after irradiation of the cervical spinal cord. Int J Radiat Oncol Biol Phys. 1990;19(1):3–8.

    PubMed  Google Scholar 

  29. Jeremic B, Djuric L, Mijatovic L. Incidence of radiation myelitis of the cervical spinal cord at doses of 5500 cGy or greater. Cancer. 1991;68(10):2138–41.

    CAS  PubMed  Google Scholar 

  30. Daly ME, Luxton G, Choi CY, Gibbs IC, Chang SD, Adler JR, et al. Normal tissue complication probability estimation by the Lyman-Kutcher-Burman method does not accurately predict spinal cord tolerance to stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2012;82(5):2025–32.

    PubMed  Google Scholar 

  31. Morimoto M, Yoshioka Y, Kotsuma T, Adachi K, Shiomi H, Suzuki O, et al. Hypofractionated stereotactic radiation therapy in three to five fractions for vestibular schwannoma. Jpn J Clin Oncol. 2013;43(8):805–12.

    PubMed  Google Scholar 

  32. Tsai JT, Lin JW, Lin CM, Chen YH, Ma HI, Jen YM, et al. Clinical evaluation of CyberKnife in the treatment of vestibular schwannomas. Biomed Res Int. 2013;2013:297093.

    PubMed  PubMed Central  Google Scholar 

  33. Meijer OW, Vandertop WP, Baayen JC, Slotman BJ. Single-fraction vs. fractionated linac-based stereotactic radiosurgery for vestibular schwannoma: a single-institution study. Int J Radiat Oncol Biol Phys. 2003;56(5):1390–6.

    CAS  PubMed  Google Scholar 

  34. Poen JC, Golby AJ, Forster KM, Martin DP, Chinn DM, Hancock SL, et al. Fractionated stereotactic radiosurgery and preservation of hearing in patients with vestibular schwannoma: a preliminary report. Neurosurgery. 1999;45(6):1299–305. discussion 305–7.

    CAS  PubMed  Google Scholar 

  35. Andrews DW, Suarez O, Goldman HW, Downes MB, Bednarz G, Corn BW, et al. Stereotactic radiosurgery and fractionated stereotactic radiotherapy for the treatment of acoustic schwannomas: comparative observations of 125 patients treated at one institution. Int J Radiat Oncol Biol Phys. 2001;50(5):1265–78.

    CAS  PubMed  Google Scholar 

  36. Collen C, Ampe B, Gevaert T, Moens M, Linthout N, De Ridder M, et al. Single fraction versus fractionated linac-based stereotactic radiotherapy for vestibular schwannoma: a single-institution experience. Int J Radiat Oncol Biol Phys. 2011;81(4):e503–9.

    PubMed  Google Scholar 

  37. McWilliams W, Trombetta M, Werts ED, Fuhrer R, Hillman T. Audiometric outcomes for acoustic neuroma patients after single versus multiple fraction stereotactic irradiation. Otol Neurotol. 2011;32(2):297–300.

    PubMed  Google Scholar 

  38. Kano H, Kondziolka D, Khan A, Flickinger JC, Lunsford LD. Predictors of hearing preservation after stereotactic radiosurgery for acoustic neuroma: clinical article. J Neurosurg. 2013;119(Suppl):863–73.

    Google Scholar 

  39. Rashid A, Karam SD, Rashid B, Kim JH, Pang D, Jean W, et al. Multisession radiosurgery for hearing preservation. Semin Radiat Oncol. 2016;26(2):105–11.

    PubMed  Google Scholar 

  40. Hayden Gephart MG, Hansasuta A, Balise RR, Choi C, Sakamoto GT, Venteicher AS, et al. Cochlea radiation dose correlates with hearing loss after stereotactic radiosurgery of vestibular schwannoma. World Neurosurg. 2013;80(3–4):359–63.

    PubMed  Google Scholar 

  41. Mayer R, Sminia P. Reirradiation tolerance of the human brain. Int J Radiat Oncol Biol Phys. 2008;70(5):1350–60.

    CAS  PubMed  Google Scholar 

  42. Friedman WA, Bova FJ, Bollampally S, Bradshaw P. Analysis of factors predictive of success or complications in arteriovenous malformation radiosurgery. Neurosurgery. 2003;52(2):296–307. discussion–8.

    PubMed  Google Scholar 

  43. Blonigen BJ, Steinmetz RD, Levin L, Lamba MA, Warnick RE, Breneman JC. Irradiated volume as a predictor of brain radionecrosis after linear accelerator stereotactic radiosurgery. Int J Radiat Oncol Biol Phys. 2010;77(4):996–1001.

    PubMed  Google Scholar 

  44. Lunsford LD, Niranjan A, Kondziolka D, Sirin S, Flickinger JC. Arteriovenous malformation radiosurgery: a twenty year perspective. Clin Neurosurg. 2008;55:108–19.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfredo Conti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conti, A. (2020). Organs at Risk (OAR) Tolerance in Hypofractionated Radiosurgery. In: Conti, A., Romanelli, P., Pantelis, E., Soltys, S., Cho, Y., Lim, M. (eds) CyberKnife NeuroRadiosurgery . Springer, Cham. https://doi.org/10.1007/978-3-030-50668-1_13

Download citation

Publish with us

Policies and ethics