Skip to main content

Hyperspectral Remote Sensing Image Classification Using Active Learning

  • Chapter
  • First Online:
Machine Learning Algorithms for Industrial Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 907))

Abstract

Hyperspectral remote sensing images capture a large number of narrow spectral bands ranging between visible and infrared spectrum. The abundant spectral data provides huge land cover information that helps in accurate classification of land use land cover of earth’s surface. However, obtaining labelled training data in hyperspectral images (HSIs) is labour expensive and time consuming. Therefore, designing a classifier that uses fewer labelled samples as possible for classification is highly desirable. Active learning (AL) is a branch of machine learning that finds most uncertain samples in an iterative way from unlabelled dataset resulting relatively smaller training set to achieve adequate classification accuracy. Support vector machine (SVM) has been extensively used as a classifier in AL approach. However, it has high computational complexity. Recently, a non-iterative learning algorithm based on least square solution known as extreme learning machine (ELM), has been integrated in AL framework for HSI classification. It provides a comparable classification accuracy while reducing computation time drastically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schohn, G., & Cohn, D. (2000). Less is more: Active learning with support vector machines. In ICML (pp. 839–846).

    Google Scholar 

  2. Dasgupta, S., Hsu, D. J., & Monteleoni, C. (2008). A general agnostic active learning algorithm. In Advances in Neural Information Processing Systems (pp. 353–360).

    Google Scholar 

  3. Settles, B. (2009). Active learning literature survey. University of Wisconsin-Madison, Department of Computer Sciences.

    Google Scholar 

  4. Rajan, S., Ghosh, J., & Crawford, M. M. (2008). An active learning approach to hyperspectral data classification. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1231–1242.

    Article  Google Scholar 

  5. Karaa, W. B. A., Ashour, A. S., Ben Sassi, D., Roy, P., Kausar, N. & Dey, N. (2016). Medline text mining: an enhancement genetic algorithm based approach for document clustering. In Applications of Intelligent Optimization in Biology and Medicine (pp. 267–287). Springer.

    Google Scholar 

  6. Chatterjee, S., Hore, S., Dey, N., Chakraborty, S., & Ashour, A. S. (2017). Dengue fever classification using gene expression data: A PSO based artificial neural network approach. In Proceedings of the 5th International Conference on Frontiers in Intelligent Computing: Theory and Applications (pp. 331–341).

    Google Scholar 

  7. Li, M., & Sethi, I. K. (2006). Confidence-based active learning. IEEE Transactions on Pattern Analysis and Machine Intelligence, 28(8), 1251–1261.

    Article  Google Scholar 

  8. Camps-Valls, G., Tuia, D., Bruzzone, L., & Benediktsson, J. A. (2014). Advances in hyperspectral image classification: Earth monitoring with statistical learning methods. IEEE Signal Processing Magazine, 31(1), 45–54.

    Article  Google Scholar 

  9. Bruzzone, L., & Bovolo, F. (2013). A novel framework for the design of change-detection systems for very-high-resolution remote sensing images. Proceedings of the IEEE, 101(3), 609–630.

    Article  Google Scholar 

  10. GĂ³mez-Chova, L., Camps-Valls, G., Munoz-Mari, J., & Calpe, J. (2008). Semisupervised image classification with Laplacian support vector machines. IEEE Geoscience and Remote Sensing Letters, 5(3), 336–340.

    Article  Google Scholar 

  11. Tuia, D., Persello, C., & Bruzzone, L. (2016). Domain adaptation for the classification of remote sensing data: An overview of recent advances. IEEE Geoscience and Remote Sensing Magazine, 4(2), 41–57.

    Article  Google Scholar 

  12. Gamba, P., Dell’Acqua, F., & Trianni, G. (2007). Rapid damage detection in the Bam area using multitemporal SAR and exploiting ancillary data. IEEE Transactions on Geoscience and Remote Sensing, 45(6), 1582–1589.

    Article  Google Scholar 

  13. Benediktsson, J. A., Pesaresi, M., & Amason, K. (2003). Classification and feature extraction for remote sensing images from urban areas based on morphological transformations. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 1940–1949.

    Article  Google Scholar 

  14. Inglada, J., & Mercier, G. (2007). A new statistical similarity measure for change detection in multitemporal SAR images and its extension to multiscale change analysis. IEEE Transactions on Geoscience and Remote Sensing, 45(5), 1432–1445.

    Article  Google Scholar 

  15. Fauvel, M., Tarabalka, Y., Benediktsson, J. A., Chanussot, J., & Tilton, J. C. (2013). Advances in spectral-spatial classification of hyperspectral images. Proceedings of the IEEE, 101(3), 652–675.

    Article  Google Scholar 

  16. Tong, S., & Koller, D. (2001). Support vector machine active learning with applications to text classification. Journal of Machine Learning Research, 2, 45–66.

    MATH  Google Scholar 

  17. de Sa, V. R. (1994). Learning classification with unlabeled data. In Advances in Neural Information Processing Systems (pp. 112–119).

    Google Scholar 

  18. Jagatheesan, K., Anand, B., Samanta, S., Dey, N., Ashour, A. S., & Balas, V. E. (2017). Particle swarm optimisation-based parameters optimisation of PID controller for load frequency control of multi-area reheat thermal power systems. International Journal of Advanced Intelligence Paradigms, 9(5–6), 464–489.

    Article  Google Scholar 

  19. Das, S. K., & Tripathi, S. (2018). Adaptive and intelligent energy efficient routing for transparent heterogeneous ad-hoc network by fusion of game theory and linear programming. Applied Intelligence, 48(7), 1825–1845.

    Article  Google Scholar 

  20. Das, S. K., & Tripathi, S. (2019). Energy efficient routing formation algorithm for hybrid ad-hoc network: A geometric programming approach. Peer-to-Peer Networking and Applications, 12(1), 102–128.

    Article  Google Scholar 

  21. Muslea, I., Minton, S., & Knoblock, C. A. (2006). Active learning with multiple views. Journal of Artificial Intelligence Research, 27, 203–233.

    Article  MathSciNet  Google Scholar 

  22. Di, W., & Crawford, M. M. (2012). View generation for multiview maximum disagreement based active learning for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1942–1954.

    Article  Google Scholar 

  23. Zhou, X., Prasad, S., & Crawford, M. (2014). Wavelet domain multi-view active learning for hyperspectral image analysis. In 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (pp. 1–4).

    Google Scholar 

  24. Efron, B. (1992). Bootstrap methods: another look at the jackknife. In Breakthroughs in statistics (pp. 569–593).

    Google Scholar 

  25. Tuia, D., Ratle, F., Pacifici, F., Kanevski, M. F., & Emery, W. J. (2009). Active learning methods for remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 47(7), 2218–2232.

    Article  Google Scholar 

  26. Vapnik, V. N. (1999). An overview of statistical learning theory. IEEE Transactions on Neural Networks, 10(5), 988–999.

    Article  Google Scholar 

  27. Mitra, P., Shankar, B. U., & Pal, S. K. (2004). Segmentation of multispectral remote sensing images using active support vector machines. Pattern Recognition Letters, 25(9), 1067–1074.

    Article  Google Scholar 

  28. Dey, N., et al. (2015). Parameter optimization for local polynomial approximation based intersection confidence interval filter using genetic algorithm: An application for brain MRI image de-noising. Journal of Imaging, 1(1), 60–84.

    Article  Google Scholar 

  29. Campbell, C., Cristianini, N., & Smola, A. (2000). Query learning with large margin classifiers. In ICML (Vol. 20, pp. 0).

    Google Scholar 

  30. Demir, B., Persello, C., & Bruzzone, L. (2011). Batch-mode active-learning methods for the interactive classification of remote sensing images. IEEE Transactions on Geoscience and Remote Sensing, 49(3), 1014–1031.

    Article  Google Scholar 

  31. Tuia, D., Volpi, M., Copa, L., Kanevski, M., & Munoz-Mari, J. (2011). A survey of active learning algorithms for supervised remote sensing image classification. IEEE Journal of Selected Topics in Signal Processing, 5(3), 606–617.

    Article  Google Scholar 

  32. Xu, J., Hang, R., & Liu, Q. (2014). Patch-based active learning (PTAL) for spectral-spatial classification on hyperspectral data. International Journal of Remote Sensing, 35(5), 1846–1875.

    Article  Google Scholar 

  33. Schroder, M., Rehrauer, H., Seidel, K., & Datcu, M. (1998). Spatial information retrieval from remote-sensing images. II. Gibbs-Markov random fields. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1446–1455.

    Article  Google Scholar 

  34. Nasrabadi, N. M. (2014). Hyperspectral target detection: An overview of current and future challenges. IEEE Signal Processing Magazine, 31(1), 34–44.

    Article  Google Scholar 

  35. Huang, G.-B., Zhu, Q.-Y., & Siew, C.-K. (2006). Extreme learning machine: Theory and applications. Neurocomputing, 70(1–3), 489–501.

    Article  Google Scholar 

  36. Pradhan, M. K., Minz, S., & Shrivastava, V. K. (2018). Fast active learning for hyperspectral image classification using extreme learning machine. IET Image Proccessing, 13, 549–555.

    Article  Google Scholar 

  37. Pradhan, M. K., Minz, S., & Shrivastava, V. K. (2019). A kernel-based extreme learning machine framework for classification of hyperspectral images using active learning. Journal of the Indian Society of Remote Sensing, 47, 1693–1705.

    Article  Google Scholar 

  38. Huang, G.-B., Zhou, H., Ding, X., & Zhang, R. (2012). Extreme learning machine for regression and multiclass classification. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(2), 513–529.

    Article  Google Scholar 

  39. Zhou, Y., Peng, J., & Philip Chen, C. L. (2014). Extreme learning machine with composite kernels for hyperspectral image classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(6), 2351–2360.

    Article  Google Scholar 

  40. http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_sensing_Scenes (2017). Accessed 22 Sept 2017.

  41. https://github.com/IPL-UV/altoolboox (2017). Accessed 15 Jan 2017.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal K. Shrivastava .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shrivastava, V.K., Pradhan, M.K. (2021). Hyperspectral Remote Sensing Image Classification Using Active Learning. In: Das, S., Das, S., Dey, N., Hassanien, AE. (eds) Machine Learning Algorithms for Industrial Applications. Studies in Computational Intelligence, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-030-50641-4_8

Download citation

Publish with us

Policies and ethics