Skip to main content

Application of Flower Pollination Algorithm to Locate Critical Failure Surface for Slope Stability Analysis

  • Chapter
  • First Online:
Machine Learning Algorithms for Industrial Applications

Part of the book series: Studies in Computational Intelligence ((SCI,volume 907))

Abstract

Analysis and design of the earth slopes has been an essential preface in the area of geotechnical science and engineering for all the times. In a certain moment of time, the geo-hazards or any geological phenomenon may come across to make the slope failures. It may provide extensive loss of life, great economics and environment damage. To reduce the enormous destruction from the slope failures, slope stability analysis can play a necessity role in evaluation of stability factor. In this chapter, a novel nature inspired algorithm based on pollination process of plants is used for locating the critical surface. The quantitative evaluation of stability analysis in terms of factor of safety demonstrated the performance of the approach. The findings indicate the appropriate performance over current methods and declare the optimum solution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredlund, D. G., & Krahn, J. (1977). Comparison of slope stability methods of analysis. Canadian Geotechnical Journal, NRC Research Press, 14(3), 429–439.

    Article  Google Scholar 

  2. Chen, Z. Y., & Shao, C. M. (1988). Evaluation of minimum factor of safety in slope stability analysis. Canadian Geotechnical Journal, NRC Research Press, 25(4), 735–748.

    Article  Google Scholar 

  3. Abramson, L. W., Lee, T. S., Sharma, S., & Boyce, G. M. (2001). Slope stability and stabilization methods. Wiley, Hoboken.

    Google Scholar 

  4. Dodagoudar, G. R., Venkatachalam, G., & Srividya, A. (2000). Reliability analysis of slopes using fuzzy sets theory. Computers and Geotechnics, Elsevier, 27(2), 101–115.

    Article  Google Scholar 

  5. Rubio, E., Hall, J. W., Anderson, M. G., & Srividya, A. (2004). Uncertainty analysis in a slope hydrology and stability model using probabilistic and imprecise information. Computers and Geotechnics, Elsevier, 31(7), 529–536.

    Article  Google Scholar 

  6. Fellenius, W. (1936). Calculation of stability of earth dam. Transactions. 2nd Congress Large Dams, Washington, DC (pp. 445–462), 4(7-8).

    Google Scholar 

  7. Singh, J., Banka, H., & Verma, A. K. (2018). Analysis of slope stability and detection of critical failure surface using gravitational search algorithm. Fourth International Conference on Recent Advances in Information Technology (RAIT) (pp. 1-6). IEEE.

    Google Scholar 

  8. Singh, J., Banka, H., & Verma, A. K. (2019). A BBO-based algorithm for slope stability analysis by locating critical failure surface. Neural Computing and Applications, Springer, 31(10), 6401–6418.

    Article  Google Scholar 

  9. Mathada, V. S., Venkatachalam, G., & Srividya, A. (2007). Slope stability assessment-a comparison of probabilistic, possibilistic and hybrid approaches. International Journal of Performability Engineering, Springer, 3(2), 231–242.

    Google Scholar 

  10. Zhang, Z., Liu, Z., Zheng, L., & Zhang, Y. (2014). Development of an adaptive relevance vector machine approach for slope stability inference. Neural Computing and Applications, Springer, 25(7–8), 2025–2035.

    Article  Google Scholar 

  11. Malkawi, A. I. H., Hassan, W. F., & Sarma, S. K. (2001). Global search method for locating general slip surface using Monte Carlo techniques. Journal of geotechnical and geoenvironmental engineering, American Society of Civil Engineers, 127(8), 688–698.

    Article  Google Scholar 

  12. Aryal, K. P. (2006). Slope Stability Evaluations by Limit Equilibrium and Finite Element Methods, PhD thesis, Norwegian University of Science and Technology.

    Google Scholar 

  13. Khajehzadeh, M., Taha, M. R., El-Shafie, A., & Eslami, M. (2012). Locating the general failure surface of earth slope using particle swarm optimisation. Civil engineering and environmental systems, Taylor & Francis, 29(1), 41–57.

    Google Scholar 

  14. Yamagami, T. (1988). Search for noncircular slip surfaces by the Morgenstern-Price method. Proceedings 6th International Conference Numerical Methods in Geomech (pp. 1335–1340).

    Google Scholar 

  15. Singh, J., Verma, A. K., Banka, H. (2020, 22 April). A comparative study for locating critical failure surface in slope stability analysis via meta-heuristic approach. Handbook of Research on Predictive Modeling and Optimization Methods in Science and Engineering (pp. 1-18). IGI Global.

    Google Scholar 

  16. Bishop, A. W. (1955). The use of the slip circle in the stability analysis of slopes. Geotechnique, Thomas Telford Ltd., 5(12), 7–17.

    Google Scholar 

  17. Janbu, N. (1973). Slope stability computations: In Embankment-dam Engineerin, Textbook. Eds. RC Hirschfeld and SJ Poulos. John Wiley and Sons INC Thomas Telford Ltd, 12(4), 67.

    Google Scholar 

  18. Cheng, Y. M., Li, L., & Chi, S. C. (2007). Performance studies on six heuristic global optimization methods in the location of critical slip surface. Computers and Geotechnics, Elsevier, 34(6), 462–484.

    Article  Google Scholar 

  19. Greco, V. R. (1996). Efficient Monte Carlo technique for locating critical slip surface. Journal of Geotechnical Engineering, American Society of Civil Engineers, 122(7), 517–525.

    Article  Google Scholar 

  20. Cheng, Y. M., Li, L., Chi, S., & Wei, W. B. (2007). Particle swarm optimization algorithm for the location of the critical non-circular failure surface in two-dimensional slope stability analysis. Computers and Geotechnics, Elsevier, 34(2), 92–103.

    Article  Google Scholar 

  21. Singh, J., Banka, H., & Verma, A. K. (2019). Locating critical failure surface using meta-heuristic approaches: A comparative assessment. Arabian Journal of Geosciences, Springer, 12(9), 307.

    Article  Google Scholar 

  22. Yamagami, T., & Ueta, Y. (1986). Noncircular slip surface analysis of the stability of slopes. Landslides, The Japan Landslide Society, 22(4), 8–16.

    Google Scholar 

  23. McCombie, P., & Wilkinson, P. (2002). The use of the simple genetic algorithm in finding the critical factor of safety in slope stability analysis. Computers and Geotechnics, Elsevier, 29(8), 699–714.

    Article  Google Scholar 

  24. Das, S. K. (2005). Slope stability analysis using genetic algorithm. Computers and Geotechnics, Elsevier, 10, 429–439.

    Google Scholar 

  25. Zolfaghari, A. R., Heath, A. C., & McCombie, P. F. (2005). Simple genetic algorithm search for critical non-circular failure surface in slope stability analysis. Computers and geotechnics, Thomas Telford Ltd, Elsevier, 32(3), 139–152.

    Google Scholar 

  26. Sun, J., Li, J., & Liu, Q. (2008). Search for critical slip surface in slope stability analysis by spline-based GA method. Journal of geotechnical and geoenvironmental engineering, American Society of Civil Engineers, 134(2), 252–256.

    Article  Google Scholar 

  27. Sengupta, A., & Upadhyay, A. (2009). Locating the critical failure surface in a slope stability analysis by genetic algorithm. Applied Soft Computing, Elsevier, 9(1), 387–392.

    Article  Google Scholar 

  28. Kahatadeniya, K. S., Nanakorn, P., & Neaupane, K. M. (2009). Determination of the critical failure surface for slope stability analysis using ant colony optimization. Engineering Geology, Elsevier, 108(1), 133–141.

    Article  Google Scholar 

  29. Khajehzadeh, M., Taha, M. R., & El-Shafie, A. (2012). A modified gravitational search algorithm for slope stability analysis. Engineering Applications of Artificial Intelligence, Elsevier, 25(8), 1589–1597.

    Article  Google Scholar 

  30. Kashani, A. R., Gandomi, A. H., & Mousavi, M. (2016). Imperialistic competitive algorithm: a metaheuristic algorithm for locating the critical slip surface in 2-dimensional soil slopes. Geoscience Frontiers, Elsevier, 7(1), 83–89.

    Article  Google Scholar 

  31. Yang, X.-S. (2012). Flower pollination algorithm for global optimization (pp. 240–249). Springer: International conference on unconventional computing and natural computation.

    Google Scholar 

  32. Balasubramani, K., & Marcus, K. (2014). A study on flower pollination algorithm and its applications. International Journal of Application or Innovation in Engineering & Management (IJAIEM), 3(11), 230–235.

    Google Scholar 

  33. Kayabekir, A. E., Bekdaş, G., Nigdeli, S. M., & Yang, X. S. (2018). A comprehensive review of the flower pollination algorithm for solving engineering problems (pp. 171–188). Springer: Nature-Inspired Algorithms and Applied Optimization.

    Google Scholar 

  34. Fister, I., Fister, I, Jr., Yang, X., & Brest, J. (2013). A comprehensive review of firefly algorithms. Swarm and Evolutionary Computation, Elsevier, 13, 34–46.

    Article  Google Scholar 

  35. Singh, J., Verma, A. K., & Banka, H. (2018). Application of biogeography based optimization to locate critical slip surface in slope stability evaluation. Fourth International Conference on Recent Advances in Information Technology (RAIT) (pp. 1–5). IEEE.

    Google Scholar 

  36. Niu, W. J. (2014). Determination of slope safety factor with analytical solution and searching critical slip surface with genetic-traversal random method. Hindawi: The Scientific World Journal.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayraj Singh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, J., Kumar, R., Banka, H. (2021). Application of Flower Pollination Algorithm to Locate Critical Failure Surface for Slope Stability Analysis. In: Das, S., Das, S., Dey, N., Hassanien, AE. (eds) Machine Learning Algorithms for Industrial Applications. Studies in Computational Intelligence, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-030-50641-4_17

Download citation

Publish with us

Policies and ethics