Skip to main content

Fast Accessing Non-volatile, High Performance-High Density, Optimized Array for Machine Learning Processor

  • Chapter
  • First Online:
  • 1521 Accesses

Part of the book series: Studies in Computational Intelligence ((SCI,volume 907))

Abstract

Traditional memory technologies for example; FLASH memory, SRAM (Static Random Access Memory) & DRAM (Dynamic Random Access Memory) are not able to cope with machine learning processor because of high density & low power requirement. FLASH memories have already attained their physical limit and therefore can’t be scaled further due to its bounded tenacity. Non-volatile memories have gained tremendous popularity after being in theoretical study for more than 30 years. Among all various types of Nonvolatile memories, Memristors are the one which are compact, highly dense, fast and nonvolatile. It combines nonvolatile nature of flash memories, speed of SRAMs and high dense nature of DRAMs. Earlier one transistor one memristor based array have been designed but it consisted of CMOS transistor that now has attained fundamental limits and nothing new can be improvised in it because it can’t be scaled further. So, in place of transistor FinFET have been used to form the memory element 1F1M, which fulfill the requirement of machine learning processors. FinFET is the most promising transistor known for its superior controllability of short channel effects and robust threshold voltage (Vth) through a double gate. The main challenge in this time is chip design with scaling of Integrated circuits (IC’s) at Low Power. The thinner Wfin FinFET shows less performance loss than the thicker Wfin FinFET. In VLSI, the Power, Area and Delay are key factors for improving circuit functionality, when any of these can be decreased then the circuit output can be improved. Due to different threshold voltage, memory types in FinFET offer Data Retention Voltage variables compared to CMOS based memory.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Gavaskar, K., & Priya, S. (2013). Design of efficient low power stable 4-bit memory cell. In International Journal of Computer Applications International Conference on Innovations In Intelligent Instrumentation, Optimization And Signal Processing (pp. 0975–8887).

    Google Scholar 

  2. Kim, N., Flautner, K., Blaauw, D. & Mudge, T. (2004). Circuit and micro architectural techniques for reducing cache leakage power. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 12(2), 167–184.

    Google Scholar 

  3. Vontobel, P. O., Robinett, W., Kuekes, P. J., Stewart, D. R., Straznicky, J. & Williams, R. S. (2009) Writing to and reading from a nanoscale crossbar memory based on memristors. Nanotechnology, 20(42), 425204.

    Google Scholar 

  4. Strukov, D. B., Snider, G. S., Stewart, D. R., & Williams, R. S. (2008). The missing memristor found. Nature, 453, 80–83.

    Article  Google Scholar 

  5. Yu, S., Liang, J., Wu, Y., & Wong, H. S. P. (2010). Read/write schemes analysis for novel complementary resistive switches in passive crossbar memory arrays. Nanotechnology, 21(46), 4652.

    Article  Google Scholar 

  6. Kozicki M. N., et al. (2004). Nonvolatile memory based on solid electrolytes. In IEEE Proceedings of Non-Volatile Memory Technology Symposium.

    Google Scholar 

  7. Vourkas, I., & Sirakoulis, G. Ch. (2014) Memristor-based combinational circuits: A design methodology for encoders/decoders. Microelectronics Journal, 45, 59–70.

    Google Scholar 

  8. Chua, L. O. (1971). Memristor – the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Article  Google Scholar 

  9. Zidan, M. A., Fahmy, H. A. H., Hussain, M. M., & Salama, K. N. (2013). Memristor-based memory: The sneak paths problem and solutions. Microelectronics Journal, 44, 176–183.

    Article  Google Scholar 

  10. Ehiro, M., Inoue, K. & Awaya, N. (2005, May). Nonvolatile memory device. U.S Patent 6 888 745, 3 May 2005.

    Google Scholar 

  11. Rabaey, J. M., Chandrakasan, A., & Nikolic, B. (2002). Digital Integrated Circuits: A Design perspective. Upper Saddle River: Prentice Hall.

    Google Scholar 

  12. Singh, S., & Mishra, V. (2018). Enhanced Static Noise Margin and Increased Stability SRAM Cell with Emerging Device Memristor at 45-nm Technology. Radio Electronics and Communication System, 61(5), 200–206.

    Article  Google Scholar 

  13. Dayal, A., Pandey, S. P., Khandelwal, S., Akashe, S.: Multiple-gate silicon on insulator (SOI) MOSFETs: Device design and analysis. In (IEEE Conference) Annual International Conference on Emerging Research Areas and 2013 International Conference on Microelectronics, Communications and Renewable Energy” (AICERA/ICMiCR), Kanjirapally, India (pp. 1–6) (2013).

    Google Scholar 

  14. Saha, D., & Sarkar, S. K. (2014). High-speed reduced-leakage SRAM memory cell design techniques for low-power 65 nm FD-SOI/SON CMOS technology. Elsevier Microelectronics Journal, 45, 848–856.

    Article  Google Scholar 

  15. Garg, A., & Kim, T. T.-H. (2013). SRAM array structures for energy efficiency enhancement. IEEE Transactions on Circuits and Systems—II, 60(6), 351–355.

    Article  Google Scholar 

  16. Khan, S., Hamdioui, S., Kukner, H., Raghavan, P., & Catthoor, F. (2013). Bias temperature instability analysis in SRAM decoder. In: 18th IEEE European Test Symposium (ETS) (pp. 4673–6377).

    Google Scholar 

  17. Wen, Liang, Li, Zhentao, & Li, Yong. (2013). Single ended, robust 8T SRAM cell for low-voltage operation. Elsevier Microelectronics Journal, 44, 718–728.

    Article  Google Scholar 

  18. Bellerimath, P. S., & Banakar, R. M. (2013). Implementation of 16x16 SRAM memory array using 180 nm technology. IJCET International Journal Of Current Engineering and Technology, 2277–4106.

    Google Scholar 

Download references

Acknowledgements

This work was supported by ITM University Gwalior, with collaboration Cadence Design System Bangalore. The authors would also like to thank to Professor Shyam Akashe for their enlightening technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishwas Mishra .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mishra, D., Kumar, A., Mishra, V., Tyagi, S., Akashe, S. (2021). Fast Accessing Non-volatile, High Performance-High Density, Optimized Array for Machine Learning Processor. In: Das, S., Das, S., Dey, N., Hassanien, AE. (eds) Machine Learning Algorithms for Industrial Applications. Studies in Computational Intelligence, vol 907. Springer, Cham. https://doi.org/10.1007/978-3-030-50641-4_15

Download citation

Publish with us

Policies and ethics