Skip to main content

Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12132))

Included in the following conference series:

Abstract

In this work we present a method for lung nodules segmentation, their texture classification and subsequent follow-up recommendation from the CT image of lung. Our method consists of neural network model based on popular U-Net architecture family but modified for the joint nodule segmentation and its texture classification tasks and an ensemble-based model for the follow-up recommendation. This solution was evaluated within the LNDb 2020 medical imaging challenge and produced the best nodule segmentation result on the final leaderboard.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pedrosa, J., et al.: LNDb: a lung nodule database on computed tomography. arXiv preprint arXiv:1911.08434 (2019)

  2. MacMahon, H., et al.: Guidelines for management of incidental pulmonary nodules detected on CT images: from the fleischner society 2017. Radiology 284(1), 228–243 (2017)

    Article  Google Scholar 

  3. Graham, B., Maaten, L.: Submanifold sparse convolutional networks. arXiv preprint arXiv:1706.01307 (2017)

  4. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. arXiv preprint arXiv:1505.04597 (2015)

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. arXiv preprint arXiv:1512.03385 (2015)

  6. Lee, K., Zung, J., Li, P., Jain, V., Seung, H. S.: Superhuman accuracy on the SNEMI3D connectomics challenge. arXiv preprint arXiv:1706.00120 (2017)

  7. Clevert, D. A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by Exponential Linear Units (ELUs). arXiv preprint arXiv:1511.07289 (2015)

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  9. Wu, Y., He, K.: Group normalization. arXiv preprint arXiv:1803.08494 (2018)

  10. Wolny, A., Cerrone, L., Kreshuk, A.: Accurate and versatile 3D segmentation of plant tissues at cellular resolution. bioRxiv preprint https://doi.org/10.1101/2020.01.17.910562 (2020)

  11. Woo, S., Park, J., Lee, J.Y., Kweon, I.S.: CBAM: convolutional block attention module. arXiv preprint arXiv:1807.06521 (2018)

  12. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  13. Luo, P., Ren, J., Peng, Z., Zhang, R., Li, J.: differentiable learning-to-normalize via switchable normalization. arXiv preprint arXiv:1806.10779 (2018)

  14. Lin, T.Y., RoyChowdhury, A., Maji, S.: Bilinear CNNs for fine-grained visual recognition. arXiv preprint arXiv:1504.07889 (2015)

  15. Sudre, C., Li, W., Vercauteren, T., Ourselin, S., Cardoso, M.: Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. arXiv preprint arXiv: 1707.03237 (2017)

    Google Scholar 

  16. Dubey, S., Chakraborty, S., Roy, S., Chaudhuri, B.: diffGrad: an optimization method for convolutional neural networks. arXiv preprint arXiv:1909.11015 (2019)

  17. Ding, J., Ren, X., Luo, R., Sun, X.: An adaptive and momental bound method for stochastic learning. arXiv preprint arXiv:1910.12249 (2019)

  18. LNDb challenge evaluation page. https://lndb.grand-challenge.org/Evaluation/. Accessed 08 Feb 2020

  19. Spitzer, R., Cohen, J., Fleiss, J., Endicott, J.: Quantification of agreement in psychiatric diagnosis: a new approach. Arch. Gen. Psychiatry 17(1), 83–87 (1967)

    Article  Google Scholar 

Download references

Acknowledgments

We are grateful to xperience.ai for support of the research and Andrey Savchenko for his assistance in preparation of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandr Rassadin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rassadin, A. (2020). Deep Residual 3D U-Net for Joint Segmentation and Texture Classification of Nodules in Lung. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_37

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_37

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics