Skip to main content

Generalized Multiple Instance Learning for Cancer Detection in Digital Histopathology

  • Conference paper
  • First Online:
  • 919 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12132))

Abstract

We address the task of detecting cancer in histological slide images based on training with weak, slide- and patch-level annotations, which are considerably easier to obtain than pixel-level annotations. we use CNN based patch-level descriptors and formulate the image classification task as a generalized multiple instance learning (MIL) problem. The generalization consists of requiring a certain number of positive instances in positive bags, instead of just one as in standard MIL. The descriptors are learned on a small number of patch-level annotations, while the MIL layer uses only image-level patches for training.

We evaluate multiple generalized MIL methods on the H&E stained images of lymphatic nodes from the CAMELYON dataset and show that generalized MIL methods improve the classification results and outperform no-MIL methods in terms of slide-level AUC. Best classification results were achieved by the MI-SVM(k) classifier in combination with simple spatial Gaussian aggregation, achieving AUC 0.962.

However, MIL did not outperform methods trained on pixel-level segmentations.

The project was supported by the Czech Science Foundation project 17-15361S and the OP VVV funded project “CZ.02.1.01/0.0/0.0/16_019/0000765 Research Center for Informatics.”.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Andrews, S., Tsochantaridis, I., Hofmann, T.: Support vector machines for multiple-instance learning. In: Advances in Neural Information Processing Systems, pp. 561–568 (2002)

    Google Scholar 

  2. Bejnordi, B.E., Veta, M., van Diest, P.J., van Ginneken, B., et al.: Diagnostic assessment of deep learning algorithms for detection of lymph node metastases in women with breast cancer. JAMA 318(22), 2199–2210 (2017). https://doi.org/10.1001/jama.2017.14585

    Article  Google Scholar 

  3. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794. ACM Press, San Francisco, California, USA (2016). https://doi.org/10.1145/2939672.2939785

  4. Das, K., Conjeti, S., Roy, A.G., Chatterjee, J., Sheet, D.: Multiple instance learning of deep convolutional neural networks for breast histopathology whole slide classification. In: 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018). pp. 578–581. IEEE, Washington, DC, April 2018. https://doi.org/10.1109/ISBI.2018.8363642

  5. Durand, T., Thome, N., Cord, M.: WELDON: weakly supervised learning of deep convolutional neural networks. In: 2016 IEEE CVPR, pp. 4743–4752, June 2016. https://doi.org/10.1109/CVPR.2016.513

  6. Hering, J., Kybic, J., Lambert, L.: Detecting multiple myeloma via generalized multiple-instance learning. In: Proceedings of SPIE, p. 22. SPIE, March 2018. https://doi.org/10.1117/12.2293112

  7. Kandemir, M., Hamprecht, F.A.: Computer-aided diagnosis from weak supervision: a benchmarking study. Comput. Med. Imaging Graph. 42, 44–50 (2015). https://doi.org/10.1016/j.compmedimag.2014.11.010

    Article  Google Scholar 

  8. Leistner, C., Saffari, A., Bischof, H.: MIForests: multiple-instance learning with randomized trees. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6316, pp. 29–42. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15567-3_3

    Chapter  Google Scholar 

  9. Litjens, G., et al.: 1399 H&E-stained sentinel lymph node sections of breast cancer patients: the CAMELYON dataset. GigaScience 7(6), June 2018. https://doi.org/10.1093/gigascience/giy065

  10. Mishkin, D., Sergievskiy, N., Matas, J.: Systematic evaluation of convolution neural network advances on the Imagenet. Comput. Vis. Image Underst. 161, 11–19 (2017). https://doi.org/10.1016/j.cviu.2017.05.007

    Article  Google Scholar 

  11. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, vol. 28, pp. 91–99. Curran Associates, Inc. (2015)

    Google Scholar 

  12. Ribli, D., Horváth, A., Unger, Z., Pollner, P., Csabai, I.: Detecting and classifying lesions in mammograms with Deep Learning. Sci. Rep. 8(1), 4165 (2018). https://doi.org/10.1038/s41598-018-22437-z

    Article  Google Scholar 

  13. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: International Conference on Learning Representations (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kybic .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hering, J., Kybic, J. (2020). Generalized Multiple Instance Learning for Cancer Detection in Digital Histopathology. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics