Skip to main content

Weighted Fisher Discriminant Analysis in the Input and Feature Spaces

  • Conference paper
  • First Online:
Book cover Image Analysis and Recognition (ICIAR 2020)

Abstract

Fisher Discriminant Analysis (FDA) is a subspace learning method which minimizes and maximizes the intra- and inter-class scatters of data, respectively. Although, in FDA, all the pairs of classes are treated the same way, some classes are closer than the others. Weighted FDA assigns weights to the pairs of classes to address this shortcoming of FDA. In this paper, we propose a cosine-weighted FDA as well as an automatically weighted FDA in which weights are found automatically. We also propose a weighted FDA in the feature space to establish a weighted kernel FDA for both existing and newly proposed weights. Our experiments on the ORL face recognition dataset show the effectiveness of the proposed weighting schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Friedman, J., Hastie, T., Tibshirani, R.: The Elements of Statistical Learning. Springer Series in Statistics, vol. 1. Springer, New York (2001). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  2. Fisher, R.A.: The use of multiple measurements in taxonomic problems. Ann. Eugen. 7(2), 179–188 (1936)

    Article  Google Scholar 

  3. Mika, S., Ratsch, G., Weston, J., Scholkopf, B., Mullers, K.R.: Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop, pp. 41–48. IEEE (1999)

    Google Scholar 

  4. Ghojogh, B., Karray, F., Crowley, M.: Roweis discriminant analysis: a generalized subspace learning method. arXiv preprint arXiv:1910.05437 (2019)

  5. Zhang, Z., Dai, G., Xu, C., Jordan, M.I.: Regularized discriminant analysis, ridge regression and beyond. J. Mach. Learn. Res. 11(Aug), 2199–2228 (2010)

    MathSciNet  MATH  Google Scholar 

  6. Díaz-Vico, D., Dorronsoro, J.R.: Deep least squares Fisher discriminant analysis. IEEE Trans. Neural Netw. Learn. Syst. (2019)

    Google Scholar 

  7. Xu, Y., Lu, G.: Analysis on Fisher discriminant criterion and linear separability of feature space. In: 2006 International Conference on Computational Intelligence and Security, vol. 2, pp. 1671–1676. IEEE (2006)

    Google Scholar 

  8. Parlett, B.N.: The Symmetric Eigenvalue Problem, vol. 20. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998)

    Book  Google Scholar 

  9. Ghojogh, B., Karray, F., Crowley, M.: Fisher and kernel Fisher discriminant analysis: tutorial. arXiv preprint arXiv:1906.09436 (2019)

  10. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  11. Ghojogh, B., Karray, F., Crowley, M.: Eigenvalue and generalized eigenvalue problems: tutorial. arXiv preprint arXiv:1903.11240 (2019)

  12. Alperin, J.L.: Local Representation Theory: Modular Representations as an Introduction to the Local Representation Theory of Finite Groups, vol. 11. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  13. Loog, M., Duin, R.P., Haeb-Umbach, R.: Multiclass linear dimension reduction by weighted pairwise Fisher criteria. IEEE Trans. Pattern Anal. Mach. Intell. 23(7), 762–766 (2001)

    Article  Google Scholar 

  14. Lotlikar, R., Kothari, R.: Fractional-step dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 22(6), 623–627 (2000)

    Article  Google Scholar 

  15. Zhang, X.Y., Liu, C.L.: Confused distance maximization for large category dimensionality reduction. In: 2012 International Conference on Frontiers in Handwriting Recognition, pp. 213–218. IEEE (2012)

    Google Scholar 

  16. Ghojogh, B., Crowley, M.: Linear and quadratic discriminant analysis: tutorial. arXiv preprint arXiv:1906.02590 (2019)

  17. Zhang, X.Y., Liu, C.L.: Evaluation of weighted Fisher criteria for large category dimensionality reduction in application to Chinese handwriting recognition. Pattern Recogn. 46(9), 2599–2611 (2013)

    Article  Google Scholar 

  18. Hastie, T., Tibshirani, R., Wainwright, M.: Statistical Learning with Sparsity: The Lasso and Generalizations. Chapman and Hall/CRC, London (2015)

    Book  Google Scholar 

  19. Perlibakas, V.: Distance measures for PCA-based face recognition. Pattern Recogn. Lett. 25(6), 711–724 (2004)

    Article  Google Scholar 

  20. Mohammadzade, H., Hatzinakos, D.: Projection into expression subspaces for face recognition from single sample per person. IEEE Trans. Affect. Comput. 4(1), 69–82 (2012)

    Article  Google Scholar 

  21. Tizhoosh, H.R.: Opposition-based learning: a new scheme for machine intelligence. In: International Conference on Computational Intelligence for Modelling, Control and Automation, vol. 1, pp. 695–701. IEEE (2005)

    Google Scholar 

  22. Jain, P., Kar, P.: Non-convex optimization for machine learning. Found. Trends® Mach. Learn. 10(3–4), 142–336 (2017)

    Article  Google Scholar 

  23. Nocedal, J., Wright, S.: Numerical Optimization. Springer, Berlin (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  24. Hamid, J.S., Greenwood, C.M., Beyene, J.: Weighted kernel Fisher discriminant analysis for integrating heterogeneous data. Comput. Stat. Data Anal. 56(6), 2031–2040 (2012)

    Article  MathSciNet  Google Scholar 

  25. Ah-Pine, J.: Normalized kernels as similarity indices. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010. LNCS (LNAI), vol. 6119, pp. 362–373. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13672-6_36

    Chapter  Google Scholar 

  26. AT&T Laboratories Cambridge: ORL Face Dataset. http://cam-orl.co.uk/facedatabase.html. Accessed 2019

  27. Belhumeur, P.N., Hespanha, J.P., Kriegman, D.J.: Eigenfaces vs. Fisherfaces: recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 711–720 (1997)

    Article  Google Scholar 

  28. Wang, Y.Q.: An analysis of the Viola-Jones face detection algorithm. Image Process. On Line 4, 128–148 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benyamin Ghojogh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ghojogh, B., Sikaroudi, M., Tizhoosh, H.R., Karray, F., Crowley, M. (2020). Weighted Fisher Discriminant Analysis in the Input and Feature Spaces. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12132. Springer, Cham. https://doi.org/10.1007/978-3-030-50516-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50516-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50515-8

  • Online ISBN: 978-3-030-50516-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics