Skip to main content

Studies of the Swirling Submerged Flow Through a Confuser

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In vortex devices, it is often required to conserve part of the energy of the swirl flow to be dispersed. One of the most rational ways to save energy is to use a confuser. The characteristic of the confuser on a swirling flow has been little studied. It was performed a numerical simulation of the operating characteristics of the confuser. To validate the mathematical model, a comparison is made with the experimental data on the expiration of a swirling jet. Validation of the results was made by comparing with the experimental results not only qualitatively, but also quantitatively in terms of velocities at characteristic points of the flow. A comparison of the flow patterns shows a fairly accurate description of the flow pattern, the attenuation of rotation, and the velocity values in different sections by a mathematical model. A comparison of the use of the SST turbulence model to the effects of streamline curvature and system rotation is presented. The application of the RANS approach using the adjusted SST turbulence model allows quickly determining all the main characteristics of the swirl flow using medium-power computers. An analysis of the operation mode of confusers of different angles on a swirling flow shows that an increase in the average speed and pressure at the outlet from the confuser with a large angle leads to the possibility of saving most of the swirling flow energy and using it in the future.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Varaksin, A.Y.: Air tornado-like vortices: Mathematical modeling (a review). High Temp. 55(2), 286–309 (2017)

    Article  Google Scholar 

  2. Liaposhchenko, O.O., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., Demianenko, M.M.: Appliance of inertial gas-dynamic separation of gas-dispersion flows in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1, p. 012025 (2017). https://doi.org/10.1088/1757-899x/233/1/012025

  3. Syomin, D., Rogovyi, A.: Features of a working process and characteristics of irrotational centrifugal pumps. Procedia Eng. 39, 231–237 (2012)

    Article  Google Scholar 

  4. Jawarneh, A.M., Sakaris, P., Vatistas, G.H.: Experimental and analytical study of the pressure drop across a double-outlet vortex chamber. J. Fluids Eng. 129(1), 100–105 (2007)

    Article  Google Scholar 

  5. Rogovyi, A., Khovanskyy, S.: Application of the similarity theory for vortex chamber superchargers. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1 (2017)

    Google Scholar 

  6. Mochalin, I., Zheng, S., Liu, J.: Improvement the performance of liquid purification by dynamic rotary filters. In: Design, Simulation, Manufacturing: The Innovation Exchange, pp. 633 − 642. Springer, Cham (2019)

    Google Scholar 

  7. Markovich, D.M., Abdurakipov, S.S., Chikishev, L.M., Dulin, V.M., Hanjalić, K.: Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26(6), 065109 (2014)

    Article  Google Scholar 

  8. Cozzi, F., Rohit, S., Solero, G.: Analysis of coherent structures in the near-field region of an isothermal free swirling jet after vortex breakdown. Exp. Thermal Fluid Sci. 109, 109860 (2019)

    Article  Google Scholar 

  9. Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006)

    Article  Google Scholar 

  10. Cala, C.E., Fernandes, E., Heitor, M.V., Shtork, S.I.: Coherent structures in unsteady swirling jet flow. Exp. Fluids 40(2), 267–276 (2006)

    Article  Google Scholar 

  11. Alekseenko, S.V., Abdurakipov, S.S., Hrebtov, M.Y., Tokarev, M.P., Dulin, V.M., Markovich, D.M.: Coherent structures in the near-field of swirling turbulent jets: a tomographic PIV study. Int. J. Heat Fluid Flow 70, 363–379 (2018)

    Article  Google Scholar 

  12. Rogovyi, A.: Energy performances of the vortex chamber supercharger. Energy 163, 52–60 (2018)

    Article  Google Scholar 

  13. Tran, C. T., Long, X., Ji, B.: Vortical structures in the cavitating flow in the Francis-99 draft tube cone under off-design conditions with the new omega vortex identification method. In: Journal of Physics: Conference Series, vol. 1296, no. 1, p. 012011 (2019)

    Google Scholar 

  14. Voloshina, A., Panchenko, A., Boltyansky, O., Titova, O.: Improvement of Manufacture Workability for Distribution Systems of Planetary Hydraulic Machines. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019, pp., 732–741. Lecture Notes in Mechanical Engineering. Springer, Cham (2020)

    Google Scholar 

  15. Pavlenko, I.V., Simonovskiy, V.I., Demianenko, M.M.: Dynamic analysis of centrifugal machine rotors supported on ball bearings by combined using 3D and beam finite element models. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1, p. 012053 (2017). https://doi.org/10.1088/1757-899x/233/1/012053

  16. Panchenko, A.,Voloshina, A., Kiurchev, S., Titova, O., Onopreychuk, D., Stefanov, V., Safoniuk, I., Pashchenko, V., Radionov, H., Golubok, M.: Development of the universal model of mechatronic system with a hydraulic drive. Eastern-Eur. J. Enterp. Technol. 4,7 (94), 51–60 (2018)

    Google Scholar 

  17. Panchenko, A., Voloshina, A., Milaeva, I., Panchenko, I., Titova, O.: The influence of the form error after rotor manufacturing on the output characteristics of an orbital hydraulic motor. Int. J. Eng. Technol. 7(4.3), 1–5 (2018)

    Google Scholar 

  18. Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Periodica Polytechnica Mech. Eng. 63(1), 67–73 (2019)

    Article  Google Scholar 

  19. Voloshina, A., Panchenko, A., Boltyansky, O., Panchenko, I., Titova O.: Justification of the kinematic diagrams for the distribution system of a planetary hydraulic motor. Int. J. Eng. Technol. 7(4.3), 6–11 (2018)

    Google Scholar 

  20. Panchenko, A., Voloshina, A., Boltyansky, O., Milaeva, I., Grechka, I., Khovanskyy, S., Svynarenko, M., Glibko, O., Maksimova, M., Paranyak, N.: Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors. Eastern-Eur. J. Enterp. Technol. 3,1(93), 67–77 (2018)

    Google Scholar 

  21. Babenko, V.V., Blohin, V.A., Voskoboinick, A.V., Turick, V.N.: Velocity fluctuations in a swirling jet of a vortex chamber. Int. J. Fluid Mech. Res. 32(2), 184–198 (2005)

    Article  Google Scholar 

  22. Besagni, G., Inzoli, F.: Computational fluid-dynamics modeling of supersonic ejectors: screening of turbulence modeling approaches. Appl. Therm. Eng. 117, 122–144 (2016)

    Article  Google Scholar 

  23. Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Guryanov, A.I.: CFD simulation of a vortex ejector for use in vacuum applications. In: Journal of Physics: Conference Series, vol. 1128, no. 1, p. 012127 (2018)

    Google Scholar 

  24. Pavlenko, I., Simonovskiy, V., Ivanov, V., Zajac, J., Pitel, J.: Application of artificial neural network for identification of bearing stiffness characteristics in rotor dynamics analysis. In: Ivanov, V., et al. (eds) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 325–335. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-93587-4_34

  25. Ivanov, V., Dehtiarov, I., Denysenko, Y., Malovana, N., Martynova, N.: Experimental diagnostic research of fixture. Diagnostyka 19(3), 3–9 (2018)

    Google Scholar 

  26. He, P., Mader, C.A., Martins, J.R., Maki, K.J.: An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM. Comput. Fluids 168, 285–303 (2018)

    Article  MathSciNet  Google Scholar 

  27. Krol, O., Sokolov, V.: Modelling of spindle nodes for machining centers. In: Journal of Physics: Conference Series, vol. 1084, p. 012007 (2018)

    Google Scholar 

  28. Krol, O., Sokolov, V.: Parametric modeling of gear cutting tools. In: Advances in Manufacturing II. Lecture Notes in Mechanical Engineering, vol. 4, pp. 3–11 (2019)

    Google Scholar 

  29. Gaydamaka, A., Kulik, G., Frantsuzov, V., Hrechka, I., Khovanskyi, S., Rogovyi, A., Svynarenko, M., Maksimova, M., Paraniak, N.: Devising an engineering procedure for calculating the ductility of a roller bearing under a no-central radial load. Eastern-Eur. J. Enterp. Technol. 3(7–99), 6–10 (2019)

    Article  Google Scholar 

  30. Tkachuk, M., Bondarenko, M., Grabovskiy, A., Sheychenko, R., Graborov, R., Posohov, V., Lunyov, E., Nabokov, A., Vasiliev, A.: Thin-walled structures: analysis of the stressed-strained state and parameter validation. Eastern-Eur. J. Enterp. Technol. 1/7(91), 18–29 (2018)

    Google Scholar 

  31. Tkachuk, M.M., Skripchenko, N., Tkachuk, M.A., Grabovskiy, A.: Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers. Eastern-Eur. J. Enterp. Technol. 5/7(95), 22–31 (2018)

    Google Scholar 

  32. Tkachuk, M.: A numerical method for axisymmetric adhesive contact based on Kalker’s variational principle. Eastern-Eur. J. Enterp. Technol. 3(7–93), 34–41 (2018)

    Article  Google Scholar 

  33. Tkachuk, M.M., Grabovskiy, A., Tkachuk, M.A., Hrechka, I., Ishchenko, O., Domina, N.: Investigation of multiple contact interaction of elements of shearing dies. Eastern-Eur. J. Enterp. Technol. 4(100), 6–15 (2019)

    Google Scholar 

  34. Atroshenko, O., Tkachuk, M., Ustinenko, O., Bondarenko, O., Diomina, N.: A numerical analysis of non-linear contact tasks for the system of plates with a bolted connection and a clearance in the fixture. Eastern-Eur. J. Enterp. Technol. 1(7), 24–29 (2016)

    Article  Google Scholar 

  35. Rogovyi, A., Khovanskyy, S., Grechka, I., Pitel, J.: The wall erosion in a vortex chamber supercharger due to pumping abrasive mediums. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 682–691. Springer, Cham (2020)

    Google Scholar 

  36. Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)

    Article  Google Scholar 

  37. Smirnov, P.E., Menter, F.R.: Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J. Turbomach. 131(4), 041010 (2009)

    Article  Google Scholar 

  38. Yin, J., Jiao, L., Wang, L.: Large eddy simulation of unsteady flow in vortex diode. Nucl. Eng. Des. 240(5), 970–974 (2010)

    Article  Google Scholar 

  39. Boushaki, T., Merlo, N., de Persis, S., Chauveau, C., Gökalp, I.: Experimental investigation of CH4-air-O2 turbulent swirling flames by Stereo-PIV. Exp. Thermal Fluid Sci. 106, 87–99 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Rogovyi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rogovyi, A., Khovanskyi, S., Hrechka, I., Gaydamaka, A. (2020). Studies of the Swirling Submerged Flow Through a Confuser. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics