Studies of the Swirling Submerged Flow Through a Confuser

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In vortex devices, it is often required to conserve part of the energy of the swirl flow to be dispersed. One of the most rational ways to save energy is to use a confuser. The characteristic of the confuser on a swirling flow has been little studied. It was performed a numerical simulation of the operating characteristics of the confuser. To validate the mathematical model, a comparison is made with the experimental data on the expiration of a swirling jet. Validation of the results was made by comparing with the experimental results not only qualitatively, but also quantitatively in terms of velocities at characteristic points of the flow. A comparison of the flow patterns shows a fairly accurate description of the flow pattern, the attenuation of rotation, and the velocity values in different sections by a mathematical model. A comparison of the use of the SST turbulence model to the effects of streamline curvature and system rotation is presented. The application of the RANS approach using the adjusted SST turbulence model allows quickly determining all the main characteristics of the swirl flow using medium-power computers. An analysis of the operation mode of confusers of different angles on a swirling flow shows that an increase in the average speed and pressure at the outlet from the confuser with a large angle leads to the possibility of saving most of the swirling flow energy and using it in the future.


Swirling flows Confuser Numerical simulation Turbulence Submerged flow 


  1. 1.
    Varaksin, A.Y.: Air tornado-like vortices: Mathematical modeling (a review). High Temp. 55(2), 286–309 (2017)CrossRefGoogle Scholar
  2. 2.
    Liaposhchenko, O.O., Sklabinskyi, V.I., Zavialov, V.L., Pavlenko, I.V., Nastenko, O.V., Demianenko, M.M.: Appliance of inertial gas-dynamic separation of gas-dispersion flows in the curvilinear convergent-divergent channels for compressor equipment reliability improvement. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1, p. 012025 (2017).
  3. 3.
    Syomin, D., Rogovyi, A.: Features of a working process and characteristics of irrotational centrifugal pumps. Procedia Eng. 39, 231–237 (2012)CrossRefGoogle Scholar
  4. 4.
    Jawarneh, A.M., Sakaris, P., Vatistas, G.H.: Experimental and analytical study of the pressure drop across a double-outlet vortex chamber. J. Fluids Eng. 129(1), 100–105 (2007)CrossRefGoogle Scholar
  5. 5.
    Rogovyi, A., Khovanskyy, S.: Application of the similarity theory for vortex chamber superchargers. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1 (2017)Google Scholar
  6. 6.
    Mochalin, I., Zheng, S., Liu, J.: Improvement the performance of liquid purification by dynamic rotary filters. In: Design, Simulation, Manufacturing: The Innovation Exchange, pp. 633 − 642. Springer, Cham (2019)Google Scholar
  7. 7.
    Markovich, D.M., Abdurakipov, S.S., Chikishev, L.M., Dulin, V.M., Hanjalić, K.: Comparative analysis of low-and high-swirl confined flames and jets by proper orthogonal and dynamic mode decompositions. Phys. Fluids 26(6), 065109 (2014)CrossRefGoogle Scholar
  8. 8.
    Cozzi, F., Rohit, S., Solero, G.: Analysis of coherent structures in the near-field region of an isothermal free swirling jet after vortex breakdown. Exp. Thermal Fluid Sci. 109, 109860 (2019)CrossRefGoogle Scholar
  9. 9.
    Syred, N.: A review of oscillation mechanisms and the role of the precessing vortex core (PVC) in swirl combustion systems. Prog. Energy Combust. Sci. 32(2), 93–161 (2006)CrossRefGoogle Scholar
  10. 10.
    Cala, C.E., Fernandes, E., Heitor, M.V., Shtork, S.I.: Coherent structures in unsteady swirling jet flow. Exp. Fluids 40(2), 267–276 (2006)CrossRefGoogle Scholar
  11. 11.
    Alekseenko, S.V., Abdurakipov, S.S., Hrebtov, M.Y., Tokarev, M.P., Dulin, V.M., Markovich, D.M.: Coherent structures in the near-field of swirling turbulent jets: a tomographic PIV study. Int. J. Heat Fluid Flow 70, 363–379 (2018)CrossRefGoogle Scholar
  12. 12.
    Rogovyi, A.: Energy performances of the vortex chamber supercharger. Energy 163, 52–60 (2018)CrossRefGoogle Scholar
  13. 13.
    Tran, C. T., Long, X., Ji, B.: Vortical structures in the cavitating flow in the Francis-99 draft tube cone under off-design conditions with the new omega vortex identification method. In: Journal of Physics: Conference Series, vol. 1296, no. 1, p. 012011 (2019)Google Scholar
  14. 14.
    Voloshina, A., Panchenko, A., Boltyansky, O., Titova, O.: Improvement of Manufacture Workability for Distribution Systems of Planetary Hydraulic Machines. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019, pp., 732–741. Lecture Notes in Mechanical Engineering. Springer, Cham (2020)Google Scholar
  15. 15.
    Pavlenko, I.V., Simonovskiy, V.I., Demianenko, M.M.: Dynamic analysis of centrifugal machine rotors supported on ball bearings by combined using 3D and beam finite element models. In: IOP Conference Series: Materials Science and Engineering, vol. 233, no. 1, p. 012053 (2017).
  16. 16.
    Panchenko, A.,Voloshina, A., Kiurchev, S., Titova, O., Onopreychuk, D., Stefanov, V., Safoniuk, I., Pashchenko, V., Radionov, H., Golubok, M.: Development of the universal model of mechatronic system with a hydraulic drive. Eastern-Eur. J. Enterp. Technol. 4,7 (94), 51–60 (2018)Google Scholar
  17. 17.
    Panchenko, A., Voloshina, A., Milaeva, I., Panchenko, I., Titova, O.: The influence of the form error after rotor manufacturing on the output characteristics of an orbital hydraulic motor. Int. J. Eng. Technol. 7(4.3), 1–5 (2018)Google Scholar
  18. 18.
    Fesenko, A., Basova, Y., Ivanov, V., Ivanova, M., Yevsiukova, F., Gasanov, M.: Increasing of equipment efficiency by intensification of technological processes. Periodica Polytechnica Mech. Eng. 63(1), 67–73 (2019)CrossRefGoogle Scholar
  19. 19.
    Voloshina, A., Panchenko, A., Boltyansky, O., Panchenko, I., Titova O.: Justification of the kinematic diagrams for the distribution system of a planetary hydraulic motor. Int. J. Eng. Technol. 7(4.3), 6–11 (2018)Google Scholar
  20. 20.
    Panchenko, A., Voloshina, A., Boltyansky, O., Milaeva, I., Grechka, I., Khovanskyy, S., Svynarenko, M., Glibko, O., Maksimova, M., Paranyak, N.: Designing the flow-through parts of distribution systems for the PRG series planetary hydraulic motors. Eastern-Eur. J. Enterp. Technol. 3,1(93), 67–77 (2018)Google Scholar
  21. 21.
    Babenko, V.V., Blohin, V.A., Voskoboinick, A.V., Turick, V.N.: Velocity fluctuations in a swirling jet of a vortex chamber. Int. J. Fluid Mech. Res. 32(2), 184–198 (2005)CrossRefGoogle Scholar
  22. 22.
    Besagni, G., Inzoli, F.: Computational fluid-dynamics modeling of supersonic ejectors: screening of turbulence modeling approaches. Appl. Therm. Eng. 117, 122–144 (2016)CrossRefGoogle Scholar
  23. 23.
    Evdokimov, O.A., Piralishvili, S.A., Veretennikov, S.V., Guryanov, A.I.: CFD simulation of a vortex ejector for use in vacuum applications. In: Journal of Physics: Conference Series, vol. 1128, no. 1, p. 012127 (2018)Google Scholar
  24. 24.
    Pavlenko, I., Simonovskiy, V., Ivanov, V., Zajac, J., Pitel, J.: Application of artificial neural network for identification of bearing stiffness characteristics in rotor dynamics analysis. In: Ivanov, V., et al. (eds) Advances in Design, Simulation and Manufacturing. DSMIE 2018. Lecture Notes in Mechanical Engineering, pp. 325–335. Springer, Cham (2019).
  25. 25.
    Ivanov, V., Dehtiarov, I., Denysenko, Y., Malovana, N., Martynova, N.: Experimental diagnostic research of fixture. Diagnostyka 19(3), 3–9 (2018)Google Scholar
  26. 26.
    He, P., Mader, C.A., Martins, J.R., Maki, K.J.: An aerodynamic design optimization framework using a discrete adjoint approach with OpenFOAM. Comput. Fluids 168, 285–303 (2018)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Krol, O., Sokolov, V.: Modelling of spindle nodes for machining centers. In: Journal of Physics: Conference Series, vol. 1084, p. 012007 (2018)Google Scholar
  28. 28.
    Krol, O., Sokolov, V.: Parametric modeling of gear cutting tools. In: Advances in Manufacturing II. Lecture Notes in Mechanical Engineering, vol. 4, pp. 3–11 (2019)Google Scholar
  29. 29.
    Gaydamaka, A., Kulik, G., Frantsuzov, V., Hrechka, I., Khovanskyi, S., Rogovyi, A., Svynarenko, M., Maksimova, M., Paraniak, N.: Devising an engineering procedure for calculating the ductility of a roller bearing under a no-central radial load. Eastern-Eur. J. Enterp. Technol. 3(7–99), 6–10 (2019)CrossRefGoogle Scholar
  30. 30.
    Tkachuk, M., Bondarenko, M., Grabovskiy, A., Sheychenko, R., Graborov, R., Posohov, V., Lunyov, E., Nabokov, A., Vasiliev, A.: Thin-walled structures: analysis of the stressed-strained state and parameter validation. Eastern-Eur. J. Enterp. Technol. 1/7(91), 18–29 (2018)Google Scholar
  31. 31.
    Tkachuk, M.M., Skripchenko, N., Tkachuk, M.A., Grabovskiy, A.: Numerical methods for contact analysis of complex-shaped bodies with account for non-linear interface layers. Eastern-Eur. J. Enterp. Technol. 5/7(95), 22–31 (2018)Google Scholar
  32. 32.
    Tkachuk, M.: A numerical method for axisymmetric adhesive contact based on Kalker’s variational principle. Eastern-Eur. J. Enterp. Technol. 3(7–93), 34–41 (2018)CrossRefGoogle Scholar
  33. 33.
    Tkachuk, M.M., Grabovskiy, A., Tkachuk, M.A., Hrechka, I., Ishchenko, O., Domina, N.: Investigation of multiple contact interaction of elements of shearing dies. Eastern-Eur. J. Enterp. Technol. 4(100), 6–15 (2019)Google Scholar
  34. 34.
    Atroshenko, O., Tkachuk, M., Ustinenko, O., Bondarenko, O., Diomina, N.: A numerical analysis of non-linear contact tasks for the system of plates with a bolted connection and a clearance in the fixture. Eastern-Eur. J. Enterp. Technol. 1(7), 24–29 (2016)CrossRefGoogle Scholar
  35. 35.
    Rogovyi, A., Khovanskyy, S., Grechka, I., Pitel, J.: The wall erosion in a vortex chamber supercharger due to pumping abrasive mediums. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing. DSMIE-2018. Lecture Notes in Mechanical Engineering, pp. 682–691. Springer, Cham (2020)Google Scholar
  36. 36.
    Menter, F.R.: Two-equation eddy-viscosity turbulence models for engineering applications. AIAA J. 32(8), 1598–1605 (1994)CrossRefGoogle Scholar
  37. 37.
    Smirnov, P.E., Menter, F.R.: Sensitization of the SST turbulence model to rotation and curvature by applying the Spalart-Shur correction term. J. Turbomach. 131(4), 041010 (2009)CrossRefGoogle Scholar
  38. 38.
    Yin, J., Jiao, L., Wang, L.: Large eddy simulation of unsteady flow in vortex diode. Nucl. Eng. Des. 240(5), 970–974 (2010)CrossRefGoogle Scholar
  39. 39.
    Boushaki, T., Merlo, N., de Persis, S., Chauveau, C., Gökalp, I.: Experimental investigation of CH4-air-O2 turbulent swirling flames by Stereo-PIV. Exp. Thermal Fluid Sci. 106, 87–99 (2019)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Kharkiv National Automobile and Highway UniversityKharkivUkraine
  2. 2.Sumy State UniversitySumyUkraine
  3. 3.National Technical University “Kharkiv Polytechnic Institute”KharkivUkraine

Personalised recommendations