Skip to main content

Analysis of the Efficiency of Engine Inlet Air Chilling Unit with Cooling Towers

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing III (DSMIE 2020)

Abstract

The processes of cooling air at the inlet of energy installations by exhaust heat conversion chillers with heat removal from them by cooling towers of the circulating cooling system are studied on the example of a gas turbine. Two-stage air cooling is considered using combined type exhaust heat conversion chillers, which utilizes the exhaust gas heat of a gas turbine and which includes absorption lithium-bromide and refrigerant ejector chillers as stages to convert waste heat into cold. The data on current heat loads on exhaust heat conversion chillers and cooling towers in accordance with climatic conditions of operation with the different distribution of heat loads on the cooling towers according to their number was obtained on the base of the results of modeling the operation of the gas turbine cooling complex. It was shown the possibility to increase the fuel saving due to turbine inlet air cooling through decreasing the number of cooling towers and electricity consumption for driving the fans of cooling towers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kumar, T.A., Muzaffarul, H.M., Islam, M.: Effect of ambient temperature on the performance of a combined cycle power plant. Trans. Can. Soc. Mech. Eng. 37(4), 1177–1188 (2013)

    Article  Google Scholar 

  2. Günnur, Ş.G., et al.: The effect of ambient temperature on electric power generation in natural gas combined cycle power plant-a case study. Energy Rep. 4, 682–690 (2018)

    Article  Google Scholar 

  3. Zhang, T., Liu, Z., Hao, H., Chang, L.J.: Application research of intake-air cooling technologies in gas-steam combined cycle power plants in China. Power Energy Eng. 2, 304–311 (2014)

    Article  Google Scholar 

  4. Yang, Ch., Yang, Z., Cai, R.: Analytical method for evaluation of gas turbine inlet air cooling in combined cycle power plant. Appl. Energy 86, 848–856 (2009)

    Article  Google Scholar 

  5. Elberry, M.F., et al.: Performance improvement of power plants using absorption cooling system. Alexandria Eng. J. 57, 2679–2686 (2018)

    Article  Google Scholar 

  6. Mahmoudi, S.M., Zare, V., Ranjbar, F., Farshi, L.: Energy and exergy analysis of simple and regenerative gas turbines inlet air cooling using absorption refrigeration. J. Appl. Sci. 9(13), 2399–2407 (2009)

    Article  Google Scholar 

  7. Butrymowicz, D., Gagan, J., Śmierciew, K., Łukaszuk, M., Dudar, A., Pawluczuk, A., Łapiński, A., Kuryłowicz, A.: Investigations of prototype ejection refrigeration system driven by low grade heat. In: HTRSE-2018, E3S Web of Conferences, vol. 70, 03002 (2018)

    Google Scholar 

  8. Elbel, S., Lawrence, N.: Review of recent developments in advanced ejector technology. Int. J. Refrig 62, 1–18 (2016)

    Article  Google Scholar 

  9. Radchenko, R., Radchenko, A., Serbin, S., Kantor, S., Portnoi, B.: Gas turbine unite inlet air cooling by using an excessive refrigeration capacity of absorption-ejector chiller in booster air cooler. In: HTRSE-2018, E3S Web of Conferences, vol. 70, 03012 (2018)

    Google Scholar 

  10. Forduy, S., Radchenko, A., Kuczynski, W., Zubarev, A., Konovalov, D.: Enhancing the fuel efficiency of gas engines in integrated energy system by chilling cyclic air. In: Tonkonogyi, V. et al. (eds.) Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner 2019. Lecture Notes in Mechanical Engineering, pp. 500–509. Springer, Cham (2020)

    Google Scholar 

  11. Popli, S., Rodgers, P., Eveloy, V.: Trigeneration scheme for energy efficiency enhancement in a natural gas processing plant through turbine exhaust gas waste heat utilization. Appl. Energy 93, 623–636 (2012)

    Article  Google Scholar 

  12. Popli, S., Rodgers, P., Eveloy, V.: Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry. Appl. Therm. Eng. 50, 918–931 (2013)

    Article  Google Scholar 

  13. Konovalov, D., Kobalava, H.: Efficiency analysis of gas turbine plant cycles with water injection by the Aerothermopressor. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. Lecture Notes in Mechanical Engineering, pp. 581–591. Springer, Cham (2020)

    Google Scholar 

  14. Konovalov, D., Trushliakov, E., Radchenko, M., Kobalava, G., Maksymov, V.: Research of the Aerothermopresor cooling system of charge air of a marine internal combustion engine under variable climatic conditions of operation. In: Tonkonogyi, V., et al. (eds.) Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pp. 520–529. Springer, Cham (2020)

    Google Scholar 

  15. Yanga, Y., Wangd, B., Zhoue, Q.: Air conditioning system design using free cooling technology and running mode of a data center in Jinan. Procedia Eng. 205, 3545–3549 (2017)

    Article  Google Scholar 

  16. Al-Ibrahim, A.M., Varnhamm, A.: A review of inlet air-cooling technologies for enhancing the performance of combustion turbines in Saudi Arabia. Appl. Therm. Eng. 30, 1879–1888 (2010)

    Article  Google Scholar 

  17. Radchenko, A., Radchenko, M., Konovalov, A., Zubarev, A.: Increasing electrical power output and fuel efficiency of gas engines in integrated energy system by absorption chiller scavenge air cooling on the base of monitoring data treatment. In: HTRSE-2018, E3S Web of Conferences, vol. 70, 03011 (2018). 6 p

    Google Scholar 

  18. Radchenko, M., Radchenko, R., Ostapenko, O., Zubarev, A., Hrych, A.: Enhancing the utilization of gas engine module exhaust heat by two-stage chillers for combined electricity, heat and refrigeration. In: 5th ICSAI 2018, Jiangsu, China, pp. 240−244 (2019)

    Google Scholar 

  19. Mulyandasari, V.: Cooling tower selection and sizing (engineering design guideline). KLM Technology Group. Practical Engineering Guidelines for Processing Plant Solutions (2011)

    Google Scholar 

  20. Radchenko, A., Bohdal, L., Zongming, Y., Portnoi, B., Tkachenko, V.: Rational designing of gas turbine inlet air cooling system. In: Tonkonogyi, V., et al. (eds.) Grabchenko’s International Conference on Advanced Manufacturing Processes. InterPartner-2019. Lecture Notes in Mechanical Engineering, pp. 591–599. Springer, Cham (2020)

    Google Scholar 

  21. Meteomanz. http://www.meteomanz.com/. Accessed 21 May 2019

  22. SE SPCGTC “Zorya”–“Mashproekt”, Nikolaev gas turbines of industrial application, Publ. (2004). 20 p.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrii Radchenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Radchenko, A., Stachel, A., Forduy, S., Portnoi, B., Rizun, O. (2020). Analysis of the Efficiency of Engine Inlet Air Chilling Unit with Cooling Towers. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics