Skip to main content

Numerical Simulation of the Mass-Transfer Process Between Ammonia and Water in the Absorption Chiller

  • Conference paper
  • First Online:
Advances in Design, Simulation and Manufacturing III (DSMIE 2020)

Abstract

This paper describes the absorption process of gaseous ammonia into liquid water in the plate heat exchanger, which is considered to be the crucial part of an absorption cooling system. Two approaches are utilized to numerically simulate this absorption process. In the first approach, the dissolution of gaseous ammonia into liquid water, as well as the following chemical reaction between the dissolved liquid ammonia and liquid water, are modeled. In the second approach, only the dissolution of ammonia into water is considered. The Henry’s Law with Van’t Hoff correlation is used for the simulation of the ammonia absorption process, namely the calculation of the concentration of ammonia in gas and in liquid. The Henry’s law is utilized since its line has the best correlation with the ammonia-water equilibrium line for the concentrations, which is taken into account in the numerical simulations. The ammonia mass flux from gas to liquid phase and its concentration at the outlet of the computational domain is determined as a result of the simulations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Srikhirin, P., Aphornratana, S., Chungpaibulpatana, S.: A review of absorption refrigeration technologies. Renew. Sustain. Energy Rev. 5, 343–372 (2000). https://doi.org/10.1016/S1364-0321(01)00003-X

    Article  Google Scholar 

  2. Ibarra-Bahena, J., Romero, R.J.: Performance of different experimental absorber designs in absorption heat pump cycle technologies: a review. Energies 7, 751–766 (2014). https://doi.org/10.3390/en7020751

    Article  Google Scholar 

  3. Crepinsek, Z., Goricanec, D., Krope, J.: Comparison of the performances of absorption refrigeration cycles. WSEAS Trans. Heat Mass Transf. 4, 65–76 (2009)

    Google Scholar 

  4. Goel, N., Goswami, D.Y.: Analysis of a counter-current vapor flow absorber. Int. J. Heat Mass Transf. 48, 1283–1292 (2005). https://doi.org/10.1016/j.ijheatmasstransfer.2004.10.009

    Article  MATH  Google Scholar 

  5. Jiang, M., Xu, S., Wu, X.: Numerical simulation and experiment for R124-DMAC bubble absorption process in a vertical tubular absorber. Int. J. Therm. Sci. 138, 124–133 (2019). https://doi.org/10.1016/j.ijthermalsci.2018.12.051

    Article  Google Scholar 

  6. Boudehenn, F., Bonnot, S., Demasles, H., et al.: Development and performances overview of ammonia-water absorption chillers with cooling capacities from 5 to 100 kW. Energy Procedia 91, 707–716 (2016). https://doi.org/10.1016/j.egypro.2016.06.234

    Article  Google Scholar 

  7. Triche, D., Bonnot, S., Perier-Muzet, M., et al.: Modeling and experimental study of an ammonia-water falling film absorber. Energy Procedia 91, 857–867 (2016). https://doi.org/10.1016/j.egypro.2016.06.252

    Article  Google Scholar 

  8. Triche, D., Bonnot, S., Perier-Muzet, M., Boudehenn, F.: Experimental and numerical study of a falling film absorber in an ammonia-water absorption chiller. Int. J. Heat Mass Trans. 111, 374–385 (2017). https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.008

    Article  Google Scholar 

  9. Taboas, F., Valles, M., Bourouis, M., Coronas, A.: Flow boiling heat transfer of ammonia/water mixture in a plate heat exchanger. Int. J. Refrig 33, 695–705 (2010). https://doi.org/10.1016/j.ijrefrig.2009.12.005

    Article  Google Scholar 

  10. Cerezo, J., Bourouis, M., Valles, M., et al.: Experimental study of an ammonia-water bubble absorber using a plate heat exchanger for absorption refrigeration machines. Appl. Therm. Eng. 29, 1005–1011 (2009). https://doi.org/10.1016/j.applthermaleng.2008.05.012

    Article  Google Scholar 

  11. Pavlenko, I., Ivanov, V., Kuric, I., Gusak, O., Liaposhchenko, O.: Ensuring vibration reliability of turbopump units using artificial neural networks. In: Trojanowska, J., Ciszak, O., Machado, J., Pavlenko, I. (eds.) Advances in Manufacturing II. MANUFACTURING 2019. LNME, pp. 165–175. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18715-6_14

  12. Liaposhchenko, O., Pavlenko, I., Demianenko, M., Starynskyi, O., Pitel, J.: The methodology of numerical simulations of separation process in SPR-separator. In: 2nd International Workshop on Computer Modeling and Intelligent Systems. CMIS 2019. CEUR Workshop Proceedings, vol. 2353, pp. 822–832 (2019)

    Google Scholar 

  13. Lima, A.A.S., Ochoa, A.A.V., Da Costa, J.A.P., Henriquez, J.R.: CFD simulation of heat and mass transfer in an absorber that uses the pair ammonia/water as a working fluid. Int. J. Refrig 98, 514–525 (2018)

    Article  Google Scholar 

  14. Ryan, E.M., Xu, W., De Croix, D., et al.: Multi-phase CFD modeling of a solid sorbent carbon capture system. Am. Soc. Mech. Eng. Fluids Eng. Div. FEDSM 1, 653–661 (2012). https://doi.org/10.1115/FEDSM2012-72298

    Article  Google Scholar 

  15. Chalermsinsuwan, B., Piumsomboon, P., Gidaspow, D.: A computational fluid dynamics design of a carbon dioxide sorption circulating fluidized bed. Part. Technol. Fluid. AlChE 56(11), 2805–2824 (2010)

    Google Scholar 

  16. Asendrych, D., Niegodajew, P., Drobniak, S.: CFD modelling of CO2 capture in a packed bed. Chem. Process Eng. 34(2), 269–282 (2013). https://doi.org/10.2478/cpe-2013-0022

    Article  Google Scholar 

  17. Niegodajew, P., Asendrych, D.: Amine based CO2 capture – CFD simulation of absorber performance. Appl. Math. Model. 40(23–24), 10222–10237 (2016). https://doi.org/10.1016/j.apm.2016.07.003

    Article  MATH  Google Scholar 

  18. Plyatsuk, L.D., Ablieieva, I.Yu., Vaskin, R.A., Yeskendirov, M., Hurets, L.L.: Mathematical modeling of gas-cleaning equipment with a highly developed phase contact surface. J. Eng. Sci. 5(2), F19–F24 (2018). https://doi.org/10.21272/jes.2018.5(2).f4

    Article  Google Scholar 

  19. Lu, X., Xie, P., Ingham, D.B., et al.: Modelling of CO2 absorption in a rotating packed bed using an Eulerian porous media approach. Chem. Eng. Sci. 199, 302–318 (2019). https://doi.org/10.1016/j.ces.2019.01.029

    Article  Google Scholar 

  20. Qin, M., Dong, Y., Cui, L., et al.: Chemical engineering research and design pilot-scale experiment and simulation optimization of dual-loop wet flue gas desulfurization spray scrubbers. Chem. Eng. Res. Des. 148, 280–290 (2019). https://doi.org/10.1016/j.cherd.2019.06.011

    Article  Google Scholar 

  21. Asfand, F., Stiriba, Y., Bourouis, M.: CFD simulation to investigate heat and mass transfer processes in a membrane-based absorber for water-LiBr absorption cooling systems. Energy 91, 517–530 (2015). https://doi.org/10.1016/j.energy.2015.08.018

    Article  Google Scholar 

  22. Liaposhchenko, O., Pavlenko, I., Monkova, K., Demianenko, M., Starynskyi, O.: Numerical simulation of aeroelastic interaction between gas-liquid flow and deformable elements in modular separation devices. In: Ivanov, V., et al. (eds.) Advances in Design, Simulation and Manufacturing II. DSMIE 2019. LNME, pp. 765–774. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-22365-6_76

  23. Liaposhchenko, O., Pavlenko, I., Ivanov, V., Demianenko, M., Starynskyi, O., Kuric, I., Khukhryanskiy, O.: Improvement of parameters for the multi-functional oil-gas separator of “Heater-Treater” type. In: 2019 IEEE 6th International Conference on Industrial Engineering and Applications (ICIEA), Tokyo, Japan, pp. 66–71 (2019). https://doi.org/10.1109/iea.2019.8715203

  24. Lukashov, V.K., Kostiuchenko, Y.V., Timofeev, S.V.: Hydrodynamics of a liquid film downflow on a flat surface in evaporation conditions into a flow of neutral gas. J. Eng. Sci. 6(1), F19–F24 (2019). https://doi.org/10.21272/jes.2019.6(1).f4

    Article  Google Scholar 

Download references

Acknowledgments

The Ministry of Education, Youth and Sport of Czech Republic financially supported the presented work within the project LQ1603 Research for SUSEN. This work has been realized within the SUSEN Project established in the framework of the European Regional Development Fund (ERDF) in project CZ.1.05/2.1.00/03.0108 and of the European Strategy Forum on Research Infrastructures (ESFRI) in the project CZ.02.1.01/0.0/0.0/15_008/0000293 and collaboration with the research project No. 0117U003931 “Development and Implementation of Energy Efficient Modular Separation Devices for Oil and Gas Purification Equipment” at Sumy State University (Sumy, Ukraine). The work has been supported by the grant project Ziel – ETZ INTERREG V Project 53 Grenzüberschreitendes F&I Netzwerk für Energieeffizienz und Kraft-Wärme- (Kälte)-Kopplung/Přeshraniční síť pro výzkum a inovace v oblasti energetické účinnosti a kombinované výroby tepla a elektřiny (2016–2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryna Demianenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Volf, M., Demianenko, M., Starynskyi, O., Liaposhchenko, O., Nejad, A.M. (2020). Numerical Simulation of the Mass-Transfer Process Between Ammonia and Water in the Absorption Chiller. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics