Topology Optimization Procedure of Aircraft Mechanical Components Based on Computer-Aided Design, Multibody Dynamics, and Finite Element Analysis

Conference paper
Part of the Lecture Notes in Mechanical Engineering book series (LNME)


In mechanical engineering, the optimization process is time-consuming because of the lack of communication between design, simulation, and analysis software. In the case of single productions or small quantities, this possibility is not taken into account. In the case of serial productions, on the other hand, the optimization of the design time is of paramount importance due to the large amount of money that can be saved. To address these challenges, this investigation proposes a topological optimization procedure for mechanical parts that have complex geometric shapes using the integration of CAD, MBD, and FEA software. The theory of linear elastodynamics is the basic approach used for the integration process carried out in this paper. In particular, the components analyzed in this work belong to the closing system of the ATR 42/72 cargo door. To explain the software integration procedure devised in the paper using SOLIDWORKS, MSC ADAMS, and ANSYS, a slider-crank mechanism is employed first as a demonstrative example. Subsequently, this computational procedure is applied to a flexible component of the latching system of the door whose loading conditions were previously obtained considering the entire opening mechanism modeled as a rigid multibody system. Finally, the topological optimization of the mechanical part is carried out and a consequential reduction in the amount of material to use is performed. The results obtained are considered significant since they led to considerable advantages in the door opening and closing system as well as a reduction of the total weight of the entire airplane.


Topology optimization Computer-Aided Design (CAD) Multi-Body Dynamics (MBD) Finite Element Analysis (FEA) Aircraft components ATR 42/72 cargo door Integration of Computer-Aided Design and Analysis (I-CAD-A) 


  1. 1.
    Li, G., Huang, Z., Wang, X.: The FEM simulation on end mill of plastic doors and windows corner cleaning based on deform-3D. In: IOP Conference Series: Materials Science and Engineering, vol. 272, no. 1, p. 012009 (2017)Google Scholar
  2. 2.
    Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018)CrossRefGoogle Scholar
  3. 3.
    Formato, A., Ianniello, D., Romano, R., Pellegrino, A., Villecco, F.: Design and development of a new press for grape marc. Machines 7(3), 51 (2019)CrossRefGoogle Scholar
  4. 4.
    Formato, G., Romano, R., Formato, A., Sorvari, J., Koiranen, T., Pellegrino, A., Villecco, F.: Fluid-structure interaction modeling applied to peristaltic pump flow simulations. Machines 7(3), 50 (2019)CrossRefGoogle Scholar
  5. 5.
    Formato, A., Ianniello, D., Pellegrino, A., Villecco, F.: Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 7(2), 46 (2019)CrossRefGoogle Scholar
  6. 6.
    Naviglio, D., Formato, A., Scaglione, G., Montesano, D., Pellegrino, A., Villecco, F., Gallo, M.: Study of the grape cryo-maceration process at different temperatures. Foods 7(7), 107 (2018)CrossRefGoogle Scholar
  7. 7.
    Sena, P., Attianese, P., Pappalardo, M., Villecco, F.: FIDELITY: fuzzy inferential diagnostic engine for online support to physicians. In: Toi, V., Toan, N., Dang Khoa, T., Lien Phuong, T. (eds.) 4th International Conference on Biomedical Engineering in Vietnam, IFMBE Proceedings, vol. 49, pp. 396–400. Springer, Berlin, Heidelberg (2013)CrossRefGoogle Scholar
  8. 8.
    Sena, P., d’Amore, M., Pappalardo, M., Pellegrino, A., Fiorentino, A., Villecco, F.: Studying the influence of cognitive load on driver’s performances by a fuzzy analysis of lane keeping in a drive simulation. IFAC Proc. Vol. 46(21), 151–156 (2013)CrossRefGoogle Scholar
  9. 9.
    Sena, P., Attianese, P., Carbone, F., Pellegrino, A., Pinto, A., Villecco, F.: A fuzzy model to interpret data of drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 2012, 868410 (2012)CrossRefGoogle Scholar
  10. 10.
    Zhang, Y., Li, Z., Gao, J., Hong, J., Villecco, F., Li, Y.: A method for designing assembly tolerance networks of mechanical assemblies. Math. Probl. Eng. 2012 (2012). Article ID 513958
  11. 11.
    Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)CrossRefGoogle Scholar
  12. 12.
    Patel, M.D., Pappalardo, C.M., Wang, G., Shabana, A.A.: Integration of geometry and small and large deformation analysis for vehicle modelling: chassis, and airless and pneumatic tyre flexibility. Int. J. Veh. Perform. 5(1), 90–127 (2019)CrossRefGoogle Scholar
  13. 13.
    Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vibr. Acoust. 139(1), 011010 (2017)CrossRefGoogle Scholar
  14. 14.
    Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 230(4), 307–328 (2016)Google Scholar
  15. 15.
    Pappalardo, C.M., Patel, M., Tinsley, B., Shabana, A.A.: Pantograph/catenary contact force control. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2015)Google Scholar
  16. 16.
    Braccesi, C., Landi, L., Scaletta, R.: New dual meshless flexible body methodology for multi-body dynamics: simulation of generalized moving loads. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 218(1), 51–62 (2004)Google Scholar
  17. 17.
    Al-Jelawy, H., Kaczmarczyk, S., Cross, M., Lewis, R., Singh, N., Alkhafaji, D.: Computational analysis of the fluid-structure interaction occurring in a model of two vehicles overtaking each other. J. Phys: Conf. Ser. 1106(1), 012009 (2018)Google Scholar
  18. 18.
    Foucault, G., Cuillière, J.-C., François, V., Léon, J.-C., Maranzana, R.: Adaptation of CAD model topology for finite element analysis. Comput.-Aided Des. 40(2), 176–196 (2008)CrossRefGoogle Scholar
  19. 19.
    Li, C., Fan, S., Shi, M.: Preparation of CAD model for finite element analysis. In: 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, pp. 491–494. IEEE (2010)Google Scholar
  20. 20.
    Hamed, A.M., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Recuero, A.M., Shabana, A.A.: Ideal compliant joints and integration of computer aided design and analysis. J. Comput. Nonlinear Dyn. 10(2), 021015 (2015)CrossRefGoogle Scholar
  21. 21.
    Louhichi, B., Abenhaim, G.N., Tahan, A.S.: CAD/CAE integration: updating the CAD model after a FEM analysis. Int. J. Adv. Manuf. Technol. 76(1–4), 391–400 (2015)CrossRefGoogle Scholar
  22. 22.
    Shabana, A.A., Wang, G.: Durability analysis and implementation of the floating frame of reference formulation. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 232(3), 295–313 (2018)Google Scholar
  23. 23.
    Russo, D., Rizzi, C.: Structural optimization strategies to design green products. Comput. Ind. 65(3), 470–479 (2014)CrossRefGoogle Scholar
  24. 24.
    Calì, M., Oliveri, S.M., Evangelos Biancolini, M., Sequenzia, G.: An integrated approach for shape optimization with mesh-morphing. In: Lecture Notes in Mechanical Engineering, pp. 311–322. Springer International Publishing (2019)Google Scholar
  25. 25.
    Bayas, M.P., Andrade, G.N., Arroba, S.M.A., Carrión, J.G.: Kinetic analysis of an ankle rehabilitator composed of two parallel delta robots. In: Memorias de Congresos UTP, pp. 89–97 (2018)Google Scholar
  26. 26.
    Ghali, A., Neville, A.: Structural Analysis a Unified Classical and Matrix Approach. CRC Press, Boca Raton (2017)zbMATHCrossRefGoogle Scholar
  27. 27.
    Buehrle, R.D., Fleming, G.A., Pappa, R.S., Grosveld, F.W.: Finite element model development for aircraft fuselage structures. S V Sound Vib. 35(1), 32–38 (2001)Google Scholar
  28. 28.
    Marusich, T.D., Usui, S., Marusich, K.J.: Finite element modeling of part distortion. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 329–338. Springer, Heidelberg (2008)Google Scholar
  29. 29.
    Melchers, R.E., Beck, A.T.: Structural Reliability Analysis and Prediction. Wiley, Hoboken (2018)Google Scholar
  30. 30.
    Kienzler, R., Herrmann, G.: Mechanics in Material Space: With Applications to Defect and Fracture Mechanics. Springer, Berlin (2012)zbMATHGoogle Scholar
  31. 31.
    Hansen, L.U., Heinze, W., Horst, P.: Blended wing body structures in multidisciplinary pre-design. Struct. Multidiscip. Optim. 36(1), 93–106 (2008)CrossRefGoogle Scholar
  32. 32.
    Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization. Springer, Berlin (2012)zbMATHGoogle Scholar
  33. 33.
    Venkataraman, S., Haftka, R.T.: Structural optimization complexity: what has Moore’s law done for us? Struct. Multidiscip. Optim. 28(6), 375–387 (2004)CrossRefGoogle Scholar
  34. 34.
    Fanni, M., Shabara, M.N., Alkalla, M.G.: A comparison between different topology optimization methods (2014)Google Scholar
  35. 35.
    Henderson, R.P., Martins, J.R.R.A., Perez, R.E.: Aircraft conceptual design for optimal environmental performance. Aeronaut. J. 116(1175), 1–22 (2012)CrossRefGoogle Scholar
  36. 36.
    Rao, J.S., Kiran, S., Kamesh, J.V., Padmanabhan, M.A., Chandra, S.: Topology optimization of aircraft wing. J. Aerosp. Sci. Technol. 61(3), 402 (2009)Google Scholar
  37. 37.
    Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. In: Karabegović, I. (ed.) New Technologies, Development and Application II. NT 2019. Lecture Notes in Networks and Systems, vol. 76, pp. 59–72. Springer, Cham (2019)Google Scholar
  38. 38.
    Guida, R., De Simone, M.C., Dašić, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. In: IOP Conference Series: Materials Science and Engineering, vol. 568, no. 1, p. 12115 (2019)Google Scholar
  39. 39.
    Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)CrossRefGoogle Scholar
  40. 40.
    De Simone, M.C., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)CrossRefGoogle Scholar
  41. 41.
    De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D 80, 141–154 (2018)Google Scholar
  42. 42.
    De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018)CrossRefGoogle Scholar
  43. 43.
    De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)CrossRefGoogle Scholar
  44. 44.
    De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)CrossRefGoogle Scholar
  45. 45.
    Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)CrossRefGoogle Scholar
  46. 46.
    Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 565–571 (2017)CrossRefGoogle Scholar
  47. 47.
    Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)CrossRefGoogle Scholar
  49. 49.
    Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  50. 50.
    Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 031008 (2017)CrossRefGoogle Scholar
  52. 52.
    Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11(5), 051009 (2016)CrossRefGoogle Scholar

Copyright information

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.MEID4 Academic Spin-Off of the University of SalernoFiscianoItaly
  2. 2.University of SalernoFiscianoItaly

Personalised recommendations