Skip to main content

Topology Optimization Procedure of Aircraft Mechanical Components Based on Computer-Aided Design, Multibody Dynamics, and Finite Element Analysis

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Mechanical Engineering ((LNME))

Abstract

In mechanical engineering, the optimization process is time-consuming because of the lack of communication between design, simulation, and analysis software. In the case of single productions or small quantities, this possibility is not taken into account. In the case of serial productions, on the other hand, the optimization of the design time is of paramount importance due to the large amount of money that can be saved. To address these challenges, this investigation proposes a topological optimization procedure for mechanical parts that have complex geometric shapes using the integration of CAD, MBD, and FEA software. The theory of linear elastodynamics is the basic approach used for the integration process carried out in this paper. In particular, the components analyzed in this work belong to the closing system of the ATR 42/72 cargo door. To explain the software integration procedure devised in the paper using SOLIDWORKS, MSC ADAMS, and ANSYS, a slider-crank mechanism is employed first as a demonstrative example. Subsequently, this computational procedure is applied to a flexible component of the latching system of the door whose loading conditions were previously obtained considering the entire opening mechanism modeled as a rigid multibody system. Finally, the topological optimization of the mechanical part is carried out and a consequential reduction in the amount of material to use is performed. The results obtained are considered significant since they led to considerable advantages in the door opening and closing system as well as a reduction of the total weight of the entire airplane.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Li, G., Huang, Z., Wang, X.: The FEM simulation on end mill of plastic doors and windows corner cleaning based on deform-3D. In: IOP Conference Series: Materials Science and Engineering, vol. 272, no. 1, p. 012009 (2017)

    Google Scholar 

  2. Villecco, F.: On the evaluation of errors in the virtual design of mechanical systems. Machines 6(3), 36 (2018)

    Article  Google Scholar 

  3. Formato, A., Ianniello, D., Romano, R., Pellegrino, A., Villecco, F.: Design and development of a new press for grape marc. Machines 7(3), 51 (2019)

    Article  Google Scholar 

  4. Formato, G., Romano, R., Formato, A., Sorvari, J., Koiranen, T., Pellegrino, A., Villecco, F.: Fluid-structure interaction modeling applied to peristaltic pump flow simulations. Machines 7(3), 50 (2019)

    Article  Google Scholar 

  5. Formato, A., Ianniello, D., Pellegrino, A., Villecco, F.: Vibration-based experimental identification of the elastic moduli using plate specimens of the olive tree. Machines 7(2), 46 (2019)

    Article  Google Scholar 

  6. Naviglio, D., Formato, A., Scaglione, G., Montesano, D., Pellegrino, A., Villecco, F., Gallo, M.: Study of the grape cryo-maceration process at different temperatures. Foods 7(7), 107 (2018)

    Article  Google Scholar 

  7. Sena, P., Attianese, P., Pappalardo, M., Villecco, F.: FIDELITY: fuzzy inferential diagnostic engine for online support to physicians. In: Toi, V., Toan, N., Dang Khoa, T., Lien Phuong, T. (eds.) 4th International Conference on Biomedical Engineering in Vietnam, IFMBE Proceedings, vol. 49, pp. 396–400. Springer, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  8. Sena, P., d’Amore, M., Pappalardo, M., Pellegrino, A., Fiorentino, A., Villecco, F.: Studying the influence of cognitive load on driver’s performances by a fuzzy analysis of lane keeping in a drive simulation. IFAC Proc. Vol. 46(21), 151–156 (2013)

    Article  Google Scholar 

  9. Sena, P., Attianese, P., Carbone, F., Pellegrino, A., Pinto, A., Villecco, F.: A fuzzy model to interpret data of drive performances from patients with sleep deprivation. Comput. Math. Methods Med. 2012, 868410 (2012)

    Article  Google Scholar 

  10. Zhang, Y., Li, Z., Gao, J., Hong, J., Villecco, F., Li, Y.: A method for designing assembly tolerance networks of mechanical assemblies. Math. Probl. Eng. 2012 (2012). https://doi.org/10.1155/2012/513958. Article ID 513958

  11. Villecco, F., Pellegrino, A.: Evaluation of uncertainties in the design process of complex mechanical systems. Entropy 19(9), 475 (2017)

    Article  Google Scholar 

  12. Patel, M.D., Pappalardo, C.M., Wang, G., Shabana, A.A.: Integration of geometry and small and large deformation analysis for vehicle modelling: chassis, and airless and pneumatic tyre flexibility. Int. J. Veh. Perform. 5(1), 90–127 (2019)

    Article  Google Scholar 

  13. Kulkarni, S., Pappalardo, C.M., Shabana, A.A.: Pantograph/catenary contact formulations. J. Vibr. Acoust. 139(1), 011010 (2017)

    Article  Google Scholar 

  14. Pappalardo, C.M., Patel, M.D., Tinsley, B., Shabana, A.A.: Contact force control in multibody pantograph/catenary systems. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 230(4), 307–328 (2016)

    Google Scholar 

  15. Pappalardo, C.M., Patel, M., Tinsley, B., Shabana, A.A.: Pantograph/catenary contact force control. In: ASME 2015 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers Digital Collection (2015)

    Google Scholar 

  16. Braccesi, C., Landi, L., Scaletta, R.: New dual meshless flexible body methodology for multi-body dynamics: simulation of generalized moving loads. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 218(1), 51–62 (2004)

    Google Scholar 

  17. Al-Jelawy, H., Kaczmarczyk, S., Cross, M., Lewis, R., Singh, N., Alkhafaji, D.: Computational analysis of the fluid-structure interaction occurring in a model of two vehicles overtaking each other. J. Phys: Conf. Ser. 1106(1), 012009 (2018)

    Google Scholar 

  18. Foucault, G., Cuillière, J.-C., François, V., Léon, J.-C., Maranzana, R.: Adaptation of CAD model topology for finite element analysis. Comput.-Aided Des. 40(2), 176–196 (2008)

    Article  Google Scholar 

  19. Li, C., Fan, S., Shi, M.: Preparation of CAD model for finite element analysis. In: 2010 International Conference on Computer, Mechatronics, Control and Electronic Engineering, pp. 491–494. IEEE (2010)

    Google Scholar 

  20. Hamed, A.M., Jayakumar, P., Letherwood, M.D., Gorsich, D.J., Recuero, A.M., Shabana, A.A.: Ideal compliant joints and integration of computer aided design and analysis. J. Comput. Nonlinear Dyn. 10(2), 021015 (2015)

    Article  Google Scholar 

  21. Louhichi, B., Abenhaim, G.N., Tahan, A.S.: CAD/CAE integration: updating the CAD model after a FEM analysis. Int. J. Adv. Manuf. Technol. 76(1–4), 391–400 (2015)

    Article  Google Scholar 

  22. Shabana, A.A., Wang, G.: Durability analysis and implementation of the floating frame of reference formulation. Proc. Inst. Mech. Eng. Part K: J. Multi-Body Dyn. 232(3), 295–313 (2018)

    Google Scholar 

  23. Russo, D., Rizzi, C.: Structural optimization strategies to design green products. Comput. Ind. 65(3), 470–479 (2014)

    Article  Google Scholar 

  24. Calì, M., Oliveri, S.M., Evangelos Biancolini, M., Sequenzia, G.: An integrated approach for shape optimization with mesh-morphing. In: Lecture Notes in Mechanical Engineering, pp. 311–322. Springer International Publishing (2019)

    Google Scholar 

  25. Bayas, M.P., Andrade, G.N., Arroba, S.M.A., Carrión, J.G.: Kinetic analysis of an ankle rehabilitator composed of two parallel delta robots. In: Memorias de Congresos UTP, pp. 89–97 (2018)

    Google Scholar 

  26. Ghali, A., Neville, A.: Structural Analysis a Unified Classical and Matrix Approach. CRC Press, Boca Raton (2017)

    Book  MATH  Google Scholar 

  27. Buehrle, R.D., Fleming, G.A., Pappa, R.S., Grosveld, F.W.: Finite element model development for aircraft fuselage structures. S V Sound Vib. 35(1), 32–38 (2001)

    Google Scholar 

  28. Marusich, T.D., Usui, S., Marusich, K.J.: Finite element modeling of part distortion. In: Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), pp. 329–338. Springer, Heidelberg (2008)

    Google Scholar 

  29. Melchers, R.E., Beck, A.T.: Structural Reliability Analysis and Prediction. Wiley, Hoboken (2018)

    Google Scholar 

  30. Kienzler, R., Herrmann, G.: Mechanics in Material Space: With Applications to Defect and Fracture Mechanics. Springer, Berlin (2012)

    MATH  Google Scholar 

  31. Hansen, L.U., Heinze, W., Horst, P.: Blended wing body structures in multidisciplinary pre-design. Struct. Multidiscip. Optim. 36(1), 93–106 (2008)

    Article  Google Scholar 

  32. Haftka, R.T., Gürdal, Z.: Elements of Structural Optimization. Springer, Berlin (2012)

    MATH  Google Scholar 

  33. Venkataraman, S., Haftka, R.T.: Structural optimization complexity: what has Moore’s law done for us? Struct. Multidiscip. Optim. 28(6), 375–387 (2004)

    Article  Google Scholar 

  34. Fanni, M., Shabara, M.N., Alkalla, M.G.: A comparison between different topology optimization methods (2014)

    Google Scholar 

  35. Henderson, R.P., Martins, J.R.R.A., Perez, R.E.: Aircraft conceptual design for optimal environmental performance. Aeronaut. J. 116(1175), 1–22 (2012)

    Article  Google Scholar 

  36. Rao, J.S., Kiran, S., Kamesh, J.V., Padmanabhan, M.A., Chandra, S.: Topology optimization of aircraft wing. J. Aerosp. Sci. Technol. 61(3), 402 (2009)

    Google Scholar 

  37. Colucci, F., De Simone, M.C., Guida, D.: TLD design and development for vibration mitigation in structures. In: Karabegović, I. (ed.) New Technologies, Development and Application II. NT 2019. Lecture Notes in Networks and Systems, vol. 76, pp. 59–72. Springer, Cham (2019)

    Google Scholar 

  38. Guida, R., De Simone, M.C., Dašić, P., Guida, D.: Modeling techniques for kinematic analysis of a six-axis robotic arm. In: IOP Conference Series: Materials Science and Engineering, vol. 568, no. 1, p. 12115 (2019)

    Google Scholar 

  39. Rivera, Z.B., De Simone, M.C., Guida, D.: Unmanned ground vehicle modelling in Gazebo/ROS-based environments. Machines 7(2), 42 (2019)

    Article  Google Scholar 

  40. De Simone, M.C., Rivera, Z., Guida, D.: Obstacle avoidance system for unmanned ground vehicles by using ultrasonic sensors. Machines 6(2), 18 (2018)

    Article  Google Scholar 

  41. De Simone, M.C., Guida, D.: Identification and control of an unmanned ground vehicle by using Arduino. UPB Sci. Bull. Ser. D 80, 141–154 (2018)

    Google Scholar 

  42. De Simone, M.C., Guida, D.: Control design for an under-actuated UAV model. FME Trans. 46(4), 443–452 (2018)

    Article  Google Scholar 

  43. De Simone, M.C., Guida, D.: Modal coupling in presence of dry friction. Machines 6(1), 8 (2018)

    Article  Google Scholar 

  44. De Simone, M.C., Rivera, Z.B., Guida, D.: Finite element analysis on squeal-noise in railway applications. FME Trans. 46(1), 93–100 (2018)

    Article  Google Scholar 

  45. Concilio, A., De Simone, M.C., Rivera, Z.B., Guida, D.: A new semi-active suspension system for racing vehicles. FME Trans. 45(4), 578–584 (2017)

    Article  Google Scholar 

  46. Quatrano, A., De Simone, M.C., Rivera, Z.B., Guida, D.: Development and implementation of a control system for a retrofitted CNC machine by using Arduino. FME Trans. 45(4), 565–571 (2017)

    Article  Google Scholar 

  47. Pappalardo, C.M.: A natural absolute coordinate formulation for the kinematic and dynamic analysis of rigid multibody systems. Nonlinear Dyn. 81(4), 1841–1869 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  48. Pappalardo, C.M., Zhang, Z., Shabana, A.A.: Use of independent volume parameters in the development of new large displacement ANCF triangular plate/shell elements. Nonlinear Dyn. 91(4), 2171–2202 (2018)

    Article  Google Scholar 

  49. Pappalardo, C.M., Wang, T., Shabana, A.A.: Development of ANCF tetrahedral finite elements for the nonlinear dynamics of flexible structures. Nonlinear Dyn. 89(4), 2905–2932 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  50. Pappalardo, C.M., Wang, T., Shabana, A.A.: On the formulation of the planar ANCF triangular finite elements. Nonlinear Dyn. 89(2), 1019–1045 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  51. Pappalardo, C.M., Wallin, M., Shabana, A.A.: A new ANCF/CRBF fully parameterized plate finite element. J. Comput. Nonlinear Dyn. 12(3), 031008 (2017)

    Article  Google Scholar 

  52. Pappalardo, C.M., Yu, Z., Zhang, X., Shabana, A.A.: Rational ANCF thin plate finite element. J. Comput. Nonlinear Dyn. 11(5), 051009 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Carmine Maria Pappalardo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manca, A.G., Pappalardo, C.M. (2020). Topology Optimization Procedure of Aircraft Mechanical Components Based on Computer-Aided Design, Multibody Dynamics, and Finite Element Analysis. In: Ivanov, V., Pavlenko, I., Liaposhchenko, O., Machado, J., Edl, M. (eds) Advances in Design, Simulation and Manufacturing III. DSMIE 2020. Lecture Notes in Mechanical Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-50491-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50491-5_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50490-8

  • Online ISBN: 978-3-030-50491-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics