Skip to main content

A Fuzzy-Based Adiantum Cultivation Support System Design

  • Conference paper
  • First Online:
Complex, Intelligent and Software Intensive Systems (CISIS 2020)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 1194))

Included in the following conference series:

  • 1370 Accesses

Abstract

Plants have different appearances depending on their life stage and environment. For this reason, intelligent cultivation systems will be required to support them. In this paper, we present the performance evaluation of a fuzzy-based cultivation support system for Adiantum. We consider soil humidity, temperature and illuminance in an indoor environment. From the evaluation results, our cultivation support system can use for Adiantum cultivation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aazam, M., Huh, E.N.: Fog computing and smart gateway based communication for cloud of things. In: Proceedings of the International Conference on Future Internet of Things and Cloud (FiCloud-2014), pp. 464–470, August 2014

    Google Scholar 

  2. Akyildiz, I.F., Kasimoglu, I.H.: Wireless sensor and actor networks: research challenges. Ad Hoc Netw. J. 2(4), 351–367 (2004)

    Article  Google Scholar 

  3. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet of things: a survey on enabling technologies, protocols, and applications. IEEE Commun. Surv. Tutorials 17(4), 2347–2376 (2015)

    Article  Google Scholar 

  4. Akan, Ö.B., Akyildiz, I.F.: Event-to-sink reliable transport in wireless sensor networks. IEEE/ACM Trans. Netw. 13(5), 1003–1016 (2005)

    Article  Google Scholar 

  5. Ebisu, K., Inaba, T., Elmazi, D., Ikeda, M., Barolli, L., Kulla, E.: A fuzzy-based testbed design for wireless sensor and actuator networks. In: Proceedings of the 5th International Workshop on Information Networking and Wireless Communications (INWC-2015), pp. 548–553, September 2015

    Google Scholar 

  6. Forlizzi, J., DiSalvo, C.: Service robots in the domestic environment: a study of the roomba vacuum in the home. In: Proceedings of the 1st ACM SIGCHI/SIGART Conference on Human-Robot Interaction (ACM HRI-2006), pp. 258–265, Utah, US, March 2006

    Google Scholar 

  7. Gravity: Analog soil moisture sensor for arduino. https://www.dfrobot.com/product-1385.html

  8. Gupta, I., Riordan, D., Sampalli, S.: Cluster-head election using fuzzy logic for wireless sensor networks. In: Proceedings of the 3rd Annual Communication Networks and Services Research Conference (CNSR-2005), pp. 255–260 (2005)

    Google Scholar 

  9. Hokkaido Agricultural Research Center, N.: HARC brochure. http://www.naro.affrc.go.jp/publicity_report/publication/files/2017NARO_english_1.pdf (2017)

  10. Honeywell HumidIcon: HIH6130/6131 series with I\(^2\)C communications. https://sensing.honeywell.com/hih6130-6131-install-50061154-3-en-final-24oct11.pdf

  11. Inaba, T., Obukata, R., Sakamoto, S., Oda, T., Ikeda, M., Barolli, L.: Performance evaluation of a QoS-aware fuzzy-based CAC for LAN access. Int. J. Space-Based Situated Comput. 6(4), 228–238 (2016)

    Article  Google Scholar 

  12. Inaba, T., Sakamoto, S., Oda, T., Barolli, L., Takizawa, M.: A new FACS for cellular wireless networks considering QoS: a comparison study of FuzzyC with MATLAB. In: Proceedings of the 18th International Conference on Network-Based Information Systems (NBiS-2015), pp. 338–344, September 2015

    Google Scholar 

  13. Jawad, F., Choudhury, T.U.R., Sazed, S.M.A., Yasmin, S., Rishva, K.I., Tamanna, F., Rahman, R.M.: Analysis of optimum crop cultivation using fuzzy system. In: Proceedings of the 15th IEEE/ACIS International Conference on Computer and Information Science (ICIS-2016), June 2016

    Google Scholar 

  14. Jiang, X., Dawson-Haggerty, S., Dutta, P., Culler, D.: Design and implementation of a high-fidelity ac metering network. In: Proceedings of the International Conference on Information Processing in Sensor Networks 2009 (IPSN-2009), pp. 253–264, San Francisco, US, April 2009

    Google Scholar 

  15. Li, T.S., Chang, S.J., Tong, W.: Fuzzy target tracking control of autonomous mobile robots by using infrared sensors. IEEE Trans. Fuzzy Syst. 12(4), 491–501 (2004)

    Article  Google Scholar 

  16. Mattihalli, C., Gedefaye, E., Endalamaw, F., Necho, A.: Plant leaf diseases detection and auto-medicine. Internet Things 1–2, 67–73 (2018)

    Article  Google Scholar 

  17. Mendel, J.M.: Fuzzy logic systems for engineering: a tutorial. Proc. IEEE 83(3), 345–377 (1995)

    Article  Google Scholar 

  18. Nanyang Senba Optical and Electronic Co., Ltd.: Gl5528 cds photoresister. http://akizukidenshi.com/download/ds/senba/GL5528_1M.pdf

  19. Petrakis, E.G.M., Sotiriadis, S., Soultanopoulos, T., Renta, P.T., Buyya, R., Bessis, N.: Internet of things as a service (iTaaS): challenges and solutions for management of sensor data on the cloud and the fog. Internet Things 3–4, 156–174 (2018)

    Article  Google Scholar 

  20. Sardogan, M., Tuncer, A., Ozen, Y.: Plant leaf disease detection and classification based on CNN with LVQ algorithm. In: Proceedings of the 3rd International Conference on Computer Science and Engineering (UBMK-2018), pp. 382–385, September 2018

    Google Scholar 

  21. Schmitt, S., Will, H., Aschenbrenner, B., Hillebrandt, T., Kyas, M.: A reference system for indoor localization testbeds. In: Proceedings of the International Conference on Indoor Positioning and Indoor Navigation (IPIN-2012), pp. 1–8, Sydney, Australia, November 2012

    Google Scholar 

  22. Sengupta, S., Das, S., Nasir, M., Vasilakos, A.V., Pedrycz, W.: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks. IEEE Trans. Syst. Man Cybern. Part C (Appl. Rev.) 42(6), 1093–1102 (2012)

    Article  Google Scholar 

  23. Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., Hassabis, D.: Mastering the game of Go without human knowledge. Nature 550, 354–359 (2017)

    Article  Google Scholar 

  24. Su, X., Wu, L., Shi, P.: Sensor networks with random link failures: distributed filtering for T-S fuzzy systems. IEEE Trans. Ind. Inf. 9(3), 1739–1750 (2013)

    Article  Google Scholar 

  25. Sung, J.Y., Guo, L., Grinter, R.E., Christensen, H.I.: My roomba is rambo: intimate home appliances. In: Proceedings of the 9th International Conference on Ubiquitous Computing (UbiComp-2007), pp. 145–162, Seoul, South Korea, September 2007

    Google Scholar 

  26. Tribelhorn, B., Dodds, Z.: Evaluating the roomba: a low-cost, ubiquitous platform for robotics research and education. In: Proceedings of the IEEE International Conference on Robotics and Automation (IEEE ICRA-2007), pp. 1393–1399, Roma, Italy, April 2007

    Google Scholar 

  27. Tsuchiya, G., Ebisu, K., Ikeda, M., Elmazi, D., Barolli, L., Kulla, E.: A fuzzy-based testbed for wireless sensor and actuator networks: performance evaluation for different remaining energy of actuators. In: Proceedings of the 11th International Conference on Innovative Mobile and Internet Services in Ubiquitous Computing (IMIS-2017), pp. 87–97 (2017)

    Google Scholar 

  28. Tsuchiya, G., Takebayashi, E., Ikeda, M., Barolli, L.: A fuzzy-based plant cultivation support system. In: Proceedings of The 12th International Conference on Complex, Intelligent, and Software Intensive Systems (CISIS-2018), pp. 127–135, July 2018

    Google Scholar 

  29. Wahjuni, S., Maarik, A., Budiardi, T.: The fuzzy inference system for intelligent water quality monitoring system to optimize eel fish farming. In: Proceedings of the International Symposium on Electronics and Smart Devices (ISESD-2016), pp. 163–167, November 2016

    Google Scholar 

  30. Xia, J., Yun, R., Yu, K., Yin, F., Wang, H., Bu, Z.: A coordinated mechanism for multimode user equipment accessing wireless sensor network. Int. J. Grid Util. Comput. 5(1), 1–10 (2014)

    Article  Google Scholar 

  31. Yu, Y., Rittle, L.J., Bhandari, V., LeBrun, J.B.: Supporting concurrent applications in wireless sensor networks. In: Proceedings of the 4th ACM International Conference on Embedded Networked Sensor Systems (ACM SenSys-2006), pp. 139–152, Boulder, US, November 2006

    Google Scholar 

  32. Yuriyama, M., Kushida, T.: Integrated cloud computing environment with IT resources and sensor devices. Int. J. Space-Based Situated Comput. 1(2/3), 163–173 (2011)

    Article  Google Scholar 

  33. Zadeh, L.: Fuzzy logic, neural networks, and soft computing. ACM Commun. 77–84 (1994)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Ikeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nishii, D., Sakamoto, S., Ikeda, M., Barolli, L. (2021). A Fuzzy-Based Adiantum Cultivation Support System Design. In: Barolli, L., Poniszewska-Maranda, A., Enokido, T. (eds) Complex, Intelligent and Software Intensive Systems. CISIS 2020. Advances in Intelligent Systems and Computing, vol 1194. Springer, Cham. https://doi.org/10.1007/978-3-030-50454-0_8

Download citation

Publish with us

Policies and ethics