Skip to main content

Towards a Better Understanding of the Workflows: Modeling Pathology Processes in View of Future AI Integration

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12090))

Abstract

A profound understanding of the pathology processes is an essential precondition for successful introduction of changes and innovations, such as for example AI and Machine Learning, into pathology. Process modeling helps to build up such a profound understanding of the pathology processes among all relevant stakeholders. This paper describes the state of the art in modeling pathology processes and shows on an example how to create a reusable multipurpose process model for the diagnostic pathology process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bedford, T.: Requisite reliability modelling in complex engineered systems. In: 11th International Conference on Mathematical Methods in Reliability MMR 2019, Hong Kong (2019)

    Google Scholar 

  2. Bendou, B., et al.: Baobab laboratory information management system: development of an open-source laboratory information management system for biobanking. Biopreserv. Biobank. 15(2), 116–120 (2017)

    Article  Google Scholar 

  3. Beyer, H., Holtzblatt, K.: Contextual Design: Defining Customer-Centered Systems. Morgan Kaufmann Publishers Inc., San Francisco (1997)

    Google Scholar 

  4. Braun, R., Schlieter, H., Burwitz, M., Esswein, W.: BPMN4CP revised - extending BPMN for multi-perspective modeling of clinical pathways. In: 2016 49th Hawaii International Conference on System Sciences (HICSS), pp. 3249–3258. IEEE (2016). https://doi.org/10.1109/HICSS.2016.407

  5. Camunda Services GmbH, Berlin: Camunda Modeler - The developer-friendly desktop app for editing BPMN process diagrams and DMN Decision Tables (2018). https://camunda.com/de/products/modeler/. Accessed 24 Nov 2019

  6. Chinosi, M., Trombetta, A.: BPMN: an introduction to the standard. Comput. Stand. Inter. 34, 124–134 (2012). https://doi.org/10.1016/j.csi.2011.06.002

    Article  Google Scholar 

  7. De Ramon Fernandez, A., Ruiz Fernandez, D., Sabuco Garcia, Y.: Business process management for optimizing clinical processes: a systematic literature review. Health Inform. J. (2019). https://doi.org/10.1177/1460458219877092. Accessed 24 Nov 2019. OnlineFirst

  8. Gainotti, S., et al.: The RD-connect registry & biobank finder: a tool for sharing aggregated data and metadata among rare disease researchers. Eur. J. Hum. Genet. 26(5), 631–643 (2018)

    Article  Google Scholar 

  9. Haberfellner, R., de Weck, O., Fricke, E., Vössner, S.: Systems Engineering - Grundlagen und Anwendung. Orell Füssli, Zürich, 13. aktualisierte auflage 2015 edn. (2015)

    Google Scholar 

  10. Ho, J., Aridor, O., Parwani, A.V.: Use of contextual inquiry to understand anatomic pathology workflow: implications for digital pathology adoption. J. Pathol. Inform. 3(35) (2012). https://doi.org/10.4103/2153-3539.101794

  11. Holtzblatt, K., Beyer, H.: Contextual design: evolved. In: Carroll, J.M. (ed.) Synthesis Lectures on Human-Centered Informatics. Morgan & Claypool, San Rafael (2014). https://doi.org/10.2200/S00597ED1V01Y201409HCI024. Accessed 13 Nov 2019

    Chapter  Google Scholar 

  12. Holzinger, A., Carrington, A., Müller, H.: Measuring the quality of explanations: the system causability scale (SCS). KI - Künstliche Intelligenz, 1–6 (2020). https://doi.org/10.1007/s13218-020-00636-z

  13. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(4) (2019). https://doi.org/10.1002/widm.1312

  14. Holzinger, A., et al.: Machine learning and knowledge extraction in digital pathology needs an integrative approach. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 13–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_2

    Chapter  Google Scholar 

  15. International Organisation for Standardization ISO: ISO/IEC 19510:2013 Information technology - Object Management Group Business Process Model (2013). https://www.iso.org/standard/62652.html. Accessed 13 Nov 2019

  16. Karner, P.: Analyse verschiedener BPMN Extensions. OPUS Online Publikationen der Universität Stuttgart (2016). http://dx.doi.org/10.18419/opus-9866. Accessed 16 Nov 2019

  17. Klingstrom, T., et al.: Supporting the development of biobanks in low and medium income countries. In: 2016 IST-Africa Week Conference. IEEE, May 2016. http://dx.doi.org/10.1109/istafrica.2016.7530672, https://doi.org/10.1109/istafrica.2016.7530672

  18. Lester, S.C.: Manual of Surgical Pathology, 3rd edn. Elsevier Inc., Saunders, Philadelphia (2010). https://doi.org/10.1016/C2009-0-38878-9

    Book  Google Scholar 

  19. Lu, R., Sadiq, S.: A survey of comparative business process modeling approaches. In: Abramowicz, W. (ed.) BIS 2007. LNCS, vol. 4439, pp. 82–94. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72035-5_7

    Chapter  Google Scholar 

  20. Merdivan, E., Singh, D., Hanke, S., Holzinger, A.: Dialogue systems for intelligent human computer interactions. Electron. Notes Theor. Comput. Sci. 343, 57–71 (2019). https://doi.org/10.1016/j.entcs.2019.04.010

    Article  Google Scholar 

  21. Müller, H., Dagher, G., Loibner, M., Stumptner, C., Kungl, P., Zatloukal, K.: Biobanks for life sciences and personalized medicine: importance of standardization, biosafety, biosecurity, and data management. Curr. Opin. Biotechnol. 65, 45–51 (2020)

    Article  Google Scholar 

  22. Müller, H., et al.: From the evaluation of existing solutions to an all-inclusive package for biobanks. Health Technol. 7(1), 89–95 (2017). https://doi.org/10.1007/s12553-016-0175-x

    Article  Google Scholar 

  23. Müller, H., et al.: State-of-the-art and future challenges in the integration of biobank catalogues. In: Holzinger, A., Röcker, C., Ziefle, M. (eds.) Smart Health. LNCS, vol. 8700, pp. 261–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16226-3_11

    Chapter  Google Scholar 

  24. Object Management Group OMG: About the Business Process Model and Notation Specification Version 2.0.2 (2014). https://www.omg.org/spec/BPMN/. Accessed 13 Nov 2019

  25. Object Management Group OMG: Business Process Model & Notation (BPMN) (2019). https://www.omg.org/bpmn/. Accessed 13 Nov 2019

  26. Object Management Group OMG: Object Management Group - Business Process Model and Notation (2019). http://www.bpmn.org/. Accessed 24 Nov 2019

  27. Object Management Group (OMG) Model Interchange Working Group: BPMN Tools tested for Model Interchange (2019). https://bpmn-miwg.github.io/bpmn-miwg-tools/. Accessed 24 Nov 2019

  28. Onggo, B.S., Proudlove, N., D’Ambrogio, A., Calabrese, A., Bisogno, S., Ghiron, N.L.: A BPMN extension to support discrete-event simulation for healthcare applications: an explicit representation of queues, attributes and data-driven decision points. J. Oper. Res. Soc. 69, 788–802 (2017). https://doi.org/10.1057/s41274-017-0267-7

    Article  Google Scholar 

  29. Phillips, L.D.: A theory of requisite decision models. Acta Psychol. 56, 29–48 (1984). https://doi.org/10.1016/0001-6918(84)90005-2

    Article  Google Scholar 

  30. Phillips, L.D.: Requisite decision modelling for technological projects. In: Vlek, C., Cvetkovich, G. (eds.) Social Decision Methodology for Technological Projects. Theory and Decision Library. Series A: Philosophy and Methodology of the Social Sciences, vol. 9, pp. 95–110. Kluwer Academic Publishers, Dordrecht (1989). https://doi.org/10.1007/978-94-009-2425-3-6

    Chapter  Google Scholar 

  31. Pohn, B., Kargl, M., Reihs, R., Holzinger, A., Zatloukal, K., Müller, H.: Towards a deeper understanding of how a pathologist makes a diagnosis: visualization of the diagnostic process in histopathology. In: IEEE Symposium on Computers and Communications (ISCC 2019). IEEE (2019). http://dx.doi.org/10.1109/ISCC47284.2019.8969598

  32. Pohn, B., Mayer, M.C., Reihs, R., Holzinger, A., Zatloukal, K., Müller, H.: Visualization of histopathological decision making using a roadbook metaphor. In: 23rd International Conference Information Visualisation (IV). IEEE (2019). http://dx.doi.org/10.1109/IV.2019.00073

  33. Posenato, R., Zerbato, F., Combi, C.: Managing decision tasks and events in time-aware business process models. In: Weske, M., Montali, M., Weber, I., vom Brocke, J. (eds.) BPM 2018. LNCS, vol. 11080, pp. 102–118. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-98648-7_7

    Chapter  Google Scholar 

  34. Proudlove, N.C., Bisogno, S., Onggo, B., Calabrese, A., Levialdi Ghiron, N.: Towards fully-facilitated discrete event simulation modeling: addressing the model coding stage. Eur. J. Oper. Res. 263, 583–595 (2017). https://doi.org/10.1016/j.ejor.2017.06.002

    Article  MATH  Google Scholar 

  35. Pufahl, L.: Modeling and executing batch activities in business processes. Ph.D. thesis, Digital-Engineering-Fakultät of Hasso-Plattner-Institute and University Potsdam (2017)

    Google Scholar 

  36. Ramos-Merino, M., Álvarez-Sabucedo, L.M., Santos-Gago, J.M., Sanz-Valero, J.: A BPMN based notation for the representation of workflows in hospital protocols. J. Med. Syst. 42(10), 181:1–181:10 (2018). https://doi.org/10.1007/s10916-018-1034-2

    Article  Google Scholar 

  37. Rojo, M.G., et al.: Implementation of the Business Process Modeling Notation (BPMN) in the modeling of anatomic pathology processes. In: New trends in digital pathology: Proceedings of the 9th European Congress on Telepathology and 3rd International Congress on Virtual Microscopy, vol. 3, Supplement 1, S22. BioMed Central (2008). http://dx.doi.org/10.1186/1746-1596-3-S1-S22

  38. Ruiz, F., et al.: Business process modeling in healthcare. In: Garcia-Rojo, M., Blobel, B., Laurinavicius, A. (eds.) Perspectives on Digital Pathology - Results of the COST Action IC0604 EURO-TELEPATH, pp. 75–87. IOS Press, Amsterdam (2012). https://doi.org/10.3233/978-1-61499-086-4-88

    Chapter  Google Scholar 

  39. Sang, K.S., Zhou, B.: BPMN security extensions for healthcare process. In: 2015 IEEE International Conference on Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing Proceedings, pp. 2340–2345. IEEE (2015). http://dx.doi.org/10.1109/HICSS.2016.407

  40. Schrader, T., Blobel, B., Garcia-Rojo, M., Daniel, C., Slodkowska, J.: State of the art in pathology business process analysis, modeling, design and optimization. In: Garcia-Rojo, M., Blobel, B., Laurinavicius, A. (eds.) Perspectives on Digital Pathology - Results of the COST Action IC0604 EURO-TELEPATH, pp. 88–102. IOS Press, Amsterdam (2012). https://doi.org/10.3233/978-1-61499-086-4-88

    Chapter  Google Scholar 

  41. Slaoui, M., Fiette, L.: Histopathology procedures: from tissue sampling to histopathological evaluation. In: Gautier, J.C. (ed.) Drug Safety Evaluation. Methods in Molecular Biology (Methods and Protocols), vol. 691, pp. 69–82. Humana Press, New York (2011). https://doi.org/10.1007/978-1-60761-849-2_4

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors declare that there are no conflicts of interests and the work does not raise any ethical issues. Part of this work has been funded by the Austrian Science Fund (FWF), Project: P-32554 “A reference model of explainable Artificial Intelligence for the Medical Domain”, and by the European Union’s Horizon 2020 research and innovation programme under grant agreements No 824087 “EOSC-Life” and No 826078 “Feature Cloud”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michaela Kargl .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kargl, M., Regitnig, P., Müller, H., Holzinger, A. (2020). Towards a Better Understanding of the Workflows: Modeling Pathology Processes in View of Future AI Integration. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics