Skip to main content

Black Box Nature of Deep Learning for Digital Pathology: Beyond Quantitative to Qualitative Algorithmic Performances

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12090))

Abstract

Artificial intelligence (AI), particularly deep learning (DL), which involves automated feature extraction using deep neural networks, is expected to be used increasingly often by clinicians in the near future. AI can analyze medical images and patient data at a level not possible by a single physician; however, the resulting parameters are difficult to interpret. This so-called “black box” problem causes opaqueness in DL. The aim of the present study is to help realize the transparency of black box machine learning for digital pathology (DP). To achieve this aim, we review the “black box” problem and the limitations of DL for DP, and attempt to reveal a paradigm shift in DP in which diagnostic accuracy is surpassed to achieve explainability. DL in medical fields such as DP still has considerable limitations. To interpret and apply DL effectively in DP, sufficient expertise in computer science is required. Moreover, although rules can be extracted using the Re-RX family, the classification accuracy is slightly lower than that using whole images trained by a convolutional neural network; thus, to establish accountability, one of the most important issues in DP is to explain the classification results clearly. Although more interpretable algorithms seem likely to be more readily accepted by medical professionals, it remains necessary to determine whether this could lead to increased clinical effectiveness. For the acceptance of AI by pathologists and physicians in DP, not only quantitative, but also qualitative algorithmic performance, such as rule extraction, should be improved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kapoor, R., Walters, S.P., Al-Aswad, L.A.: The current state of artificial intelligence in ophthalmology. Surv. Ophthalmol. 64(2), 233–240 (2019)

    Article  Google Scholar 

  2. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  Google Scholar 

  3. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neural networks. Science 313, 504–507 (2006)

    Article  MathSciNet  Google Scholar 

  4. LeCun, Y., et al.: Handwritten Digit Recognition With a Back-Propagation Network. In: Touretzky, D.S. (ed.) Advances in neural information processing systems, vol. 2, pp. 396–404. MIT Press, Cambridge (1989)

    Google Scholar 

  5. Topol, E.J.: High-performance medicine: the convergence of human and artificial intelligence. Nat. Med. 25, 44–56 (2019)

    Article  Google Scholar 

  6. Rahim, S.S., Palade, V., Almakky, I., Holzinger, A.: Detection of diabetic retinopathy and maculopathy in eye fundus images using deep learning and image augmentation. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 114–127. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_8

    Chapter  Google Scholar 

  7. Holzinger, A., Kickmeier-Rust, M., Müller, H.: KANDINSKY patterns as IQ-test for machine learning. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 1–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_1

    Chapter  Google Scholar 

  8. Holzinger, A., et al.: Interactive machine learning: experimental evidence for the human in the algorithmic loop. Appl. Intell. 49(7), 2401–2414 (2019). https://doi.org/10.1007/s10489-018-1361-5

    Article  Google Scholar 

  9. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Mueller, H.: Causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(4) (2019), https://doi.org/10.1002/widm.1312

  10. Gallant, S.I.: Connectionist expert systems. Commun. ACM 31, 152–169 (1988)

    Article  Google Scholar 

  11. Hayashi, Y.: A neural expert system with automated extraction of fuzzy if–then rules and its application to medical diagnosis. In: Lippmann, R.P., Moody, J.E., Touretzky, D.S. (eds.) Advances in Neural Information Processing Systems, vol. 3, pp. 578–584. Morgan Kaufmann, Los Altos (1991)

    Google Scholar 

  12. Andrews, R., Diederich, J., Tickele, A.: Survey and critiques of techniques for extracting rules from trained artificial neural networks. Knowl. Based Syst. 8, 373–389 (1995)

    Article  Google Scholar 

  13. Setiono, R., Baesens, B., Mues, C.: Recursive neural network rule extraction for data with mixed attributes. IEEE Trans. Neural Networks 19(2008), 299–307 (2008)

    Article  Google Scholar 

  14. Hayashi, Y., Yukita, S.: Rule extraction using recursive-rule extraction algorithm with J48graft with sampling selection techniques for the diagnosis of type 2 diabetes mellitus in the Pima Indian Dataset. Inf. Med. Unlocked 2, 92–104 (2016)

    Article  Google Scholar 

  15. Fortuny, E.J.D., Martens, D.: Active learning-based pedagogical rule extraction. IEEE Trans. Neural Networks Learn. Syst. 26, 2664–2677 (2015)

    Article  MathSciNet  Google Scholar 

  16. Hayashi, Y., Oisi, T.: High accuracy-priority rule extraction for reconciling accuracy an interpretability in credit scoring. New Gener. Comput. 36(4), 393–418 (2018). https://doi.org/10.1007/s00354-018-0043-5

    Article  Google Scholar 

  17. Uehara, D., et al.: The non-invasive prediction steatohepatitis in Japanese patients with morbid obesity by artificial intelligence using rule extraction technology. World J. Hepatol. 10(12), 934–943 (2018). https://doi.org/10.4254/wjh.v10.i12.934

    Article  Google Scholar 

  18. Hayashi, Y., Nakajima, K., Nakajima, K.: A rule extraction approach to explore the upper limit of hemoglobin during anemia treatment in patients with predialysis chronic kidney disease. Inf. Med. Unlocked 17, 100262 (2019)

    Article  Google Scholar 

  19. Hayashi, Y.: Detection of lower albuminuria levels and early development of diabetic kidney disease using an artificial intelligence-based rule extraction approach. Diagnostics 9, 133 (2019). https://doi.org/10.3390/diagnostics9040133

    Article  Google Scholar 

  20. Hayashi, Y.: The right direction needed to develop white-box deep learning in radiology, pathology, and ophthalmology: a short review. Front. Robot. AI 2019(6), 24 (2019)

    Article  Google Scholar 

  21. Abels, E., Pantanowitz, L., Aeffner, F., et al.: Computational pathology definitions, best practices, and recommendations for regulatory guidance: a white paper from the Digital Pathology Association. J Pathol. 249, 286–294 (2019)

    Article  Google Scholar 

  22. Aresta, G., et al.: BACH: grand challenge on breast cancer histology images. Med. Image Anal. 56, 122–139 (2019)

    Article  Google Scholar 

  23. Hayashi, Y.: Toward the transparency of deep learning in radiological imaging: beyond quantitative to qualitative artificial intelligence. J Med. Artif. Intell. 2, 19 (2019). https://doi.org/10.21037/jmai.2019.09.06

    Article  Google Scholar 

  24. Golden, J.A.: Deep learning algorithms for detection of lymph node metastases from breast cancer helping artificial intelligence be seen. JAMA 318(22), 2184–2186 (2017). https://doi.org/10.1001/jama.2017.14580

    Article  Google Scholar 

  25. Litjens, G., et al.: Deep learning as a tool for increased accuracy and efficiency of histopathological diagnosis. Sci. Rep. 6, 26286 (2016). https://doi.org/10.1038/srep26286

    Article  Google Scholar 

  26. Liu, Y., et al.: Artificial intelligence-based breast cancer nodal metastasis detection insights: into the black box for pathologists. Arch. Pathol. Lab. Med. (2018). https://doi.org/10.5858/arpa.2018-0147-OA

  27. Gecer, B., et al.: Detection and classification of cancer in whole slide breast histopathology images using deep convolutional networks. Pattern Recogn. 84, 345–356 (2018)

    Article  Google Scholar 

  28. Rudin, C.: Stop explaining black box machine learning models for high stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215 (2019)

    Article  Google Scholar 

  29. Campanella, G., et al.: Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25, 1301–1309 (2019)

    Article  Google Scholar 

  30. Hayashi, Y.: Use of a deep belief network for small high-level abstraction data sets using artificial intelligence with rule extraction. Neural Comput. 30(12), 3309–3332 (2018)

    Article  MathSciNet  Google Scholar 

  31. Hayashi, Y.: Synergy effects between the grafting and the subdivision in the Re-RX with J48graft for the diagnosis of thyroid disease. Knowl. Based Syst. 131, 170–182 (2017)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Japan Society for the Promotion of Science through a Grant-in-Aid for Scientific Research (C) (18K11481).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Hayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hayashi, Y. (2020). Black Box Nature of Deep Learning for Digital Pathology: Beyond Quantitative to Qualitative Algorithmic Performances. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics