Skip to main content

Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Abstract

The eligibility for hormone therapy to treat breast cancer largely depends on the tumor’s estrogen receptor (ER) status. Recent studies show that the ER status correlates with morphological features found in Haematoxylin-Eosin (HE) slides. Thus, HE analysis might be sufficient for patients for whom the classifier confidently predicts the ER status and thereby obviate the need for additional examination, such as immunohistochemical (IHC) staining. Several prior works are limited by either the use of engineered features, multi-stage models that use features unspecific to HE images or a lack of explainability. To address these limitations, this work proposes an end-to-end neural network ensemble that shows state-of-the-art performance. We demonstrate that the approach also translates to the prediction of the cancer grade. Moreover, subsets can be selected from the test data for which the model can detect a positive ER status with a precision of 94% while classifying 13% of the patients. To compensate for the reduced interpretability of the model that comes along with end-to-end training, this work applies Layer-wise Relevance Propagation (LRP) to determine the relevant parts of the images a posteriori, commonly visualized as a heatmap overlayed with the input image. We found that nuclear and stromal morphology and lymphocyte infiltration play an important role in the classification of the ER status. This demonstrates that interpretable machine learning can be a vital tool for validating and generating hypotheses about morphological biomarkers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Available at https://portal.gdc.cancer.gov/projects/TCGA-BRCA/.

  2. 2.

    Note that this formulation includes both fully-connected and convolutional layers.

  3. 3.

    The output of a DNN typically does not represent the true confidence of the model in terms of probability since it is not properly calibrated. However, here, we stick with the term “confidence” to denote the output probability of the highest scoring class as it is commonly used that way in the literature.

References

  1. Alber, M.: Software and application patterns for explanation methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 399–433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_22

    Chapter  Google Scholar 

  2. Alber, M., et al.: Innvestigate neural networks!. J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  3. Arpino, G., Bardou, V.J., Clark, G.M., Elledge, R.M.: Infiltrating lobular carcinoma of the breast: tumor characteristics and clinical outcome. Breast Cancer Res. 6(3), R149 (2004). https://doi.org/10.1186/bcr767

    Article  Google Scholar 

  4. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Article  Google Scholar 

  5. Beck, A.H., et al.: Systematic analysis of breast cancer morphology uncovers stromal features associated with survival. Sci. Transl. Med. 3(108), 108ra113–108ra113 (2011)

    Article  Google Scholar 

  6. Bengio, Y., Courville, A., Vincent, P.: Representation learning: a review and new perspectives. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1798–1828 (2013)

    Article  Google Scholar 

  7. Binder, A., et al.: Towards computational fluorescence microscopy: machine learning-based integrated prediction of morphological and molecular tumor profiles. arXiv preprint arXiv:1805.11178 (2018)

  8. Budczies, J., et al.: Classical pathology and mutational load of breast cancer-integration of two worlds. J. Pathol. Clin. Res. 1(4), 225–238 (2015)

    Article  Google Scholar 

  9. Cortes, C., Mohri, M.: AUC optimization vs. error rate minimization. In: Advances in Neural Information Processing Systems, pp. 313–320 (2004)

    Google Scholar 

  10. Couture, H.D., et al.: Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 4, 30 (2018)

    Article  Google Scholar 

  11. Dombrowski, A.K., Alber, M., Anders, C., Ackermann, M., Müller, K.R., Kessel, P.: Explanations can be manipulated and geometry is to blame. In: Advances in Neural Information Processing Systems, pp. 13567–13578 (2019)

    Google Scholar 

  12. Elston, C.W., Ellis, I.O.: Pathological prognostic factors in breast cancer. i. The value of histological grade in breast cancer: experience from a large study with long-term follow-up. Histopathology 19(5), 403–410 (1991)

    Article  Google Scholar 

  13. Hägele, M., et al.: Resolving challenges in deep learning-based analyses of histopathological images using explanation methods. Sci. Rep. 10(1), 1–12 (2020)

    Article  Google Scholar 

  14. Hammond, M.E.H., et al.: American society of clinical oncology/college of american pathologists guideline recommendations for immunohistochemical testing of estrogen and progesterone receptors in breast cancer (unabridged version). Archiv. Pathol. Lab. Med. 134(7), e48–e72 (2010)

    Google Scholar 

  15. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-84858-7

    Book  MATH  Google Scholar 

  16. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  17. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainabilty of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discov. 9(4), e1312 (2019)

    Google Scholar 

  18. Hooker, S., Erhan, D., Kindermans, P.J., Kim, B.: Evaluating feature importance estimates. arXiv preprint arXiv:1806.10758 (2018)

  19. Hui, L.Y.W., Binder, A.: BatchNorm decomposition for deep neural network interpretation. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp. 280–291. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8_24

    Chapter  Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  21. Jurmeister, P., et al.: Machine learning analysis of DNA methylation profiles distinguishes primary lung squamous cell carcinomas from head and neck metastases. Sci. Transl. Med. 11(509), eaaw8513 (2019). 11 September 2019, https://doi.org/10.1126/scitranslmed.aaw8513

  22. Kindermans, P.J., et al.: Learning how to explain neural networks: PatternNet and PatternAttribution. arXiv preprint arXiv:1705.05598 (2017)

  23. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  24. Klauschen, F., et al.: Scoring of tumor-infiltrating lymphocytes: From visual estimation to machine learning. Semin. Cancer Biol. 52, 151–157 (2018)

    Article  Google Scholar 

  25. Korbar, B., et al.: Looking under the hood: deep neural network visualization to interpret whole-slide image analysis outcomes for colorectal polyps. In: IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPR), pp. 821–827 (2017)

    Google Scholar 

  26. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10(1), 1096 (2019)

    Article  Google Scholar 

  27. Millis, R.R.: Correlation of hormone receptors with pathological features in human breast cancer. Cancer 46(S12), 2869–2871 (1980). https://doi.org/10.1002/1097-0142(19801215)46:12+<2869::AID-CNCR2820461426>3.0.CO;2-Q

    Article  Google Scholar 

  28. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700, pp. 193–209. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6_10

    Chapter  Google Scholar 

  29. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Proc. 73, 1–15 (2018)

    Article  MathSciNet  Google Scholar 

  30. Osborne, C.K., Yochmowitz, M.G., Knight III, W.A., McGuire, W.L.: The value of estrogen and progesterone receptors in the treatment of breast cancer. Cancer 46(S12), 2884–2888 (1980)

    Article  Google Scholar 

  31. Platt, J.: Probabilistic outputs for support vector machines and comparisons to regularized likelihood methods. Adv. Large Margin Classif. 10(3), 61–74 (1999)

    Google Scholar 

  32. Rawat, R.R., Ruderman, D., Macklin, P., Rimm, D.L., Agus, D.B.: Correlating nuclear morphometric patterns with estrogen receptor status in breast cancer pathologic specimens. NPJ Breast Cancer 4, 32 (2018)

    Article  Google Scholar 

  33. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

    Book  Google Scholar 

  34. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2016)

    Article  MathSciNet  Google Scholar 

  35. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  36. Shamai, G., Binenbaum, Y., Slossberg, R., Duek, I., Gil, Z., Kimmel, R.: Artificial intelligence algorithms to assess hormonal status from tissue microarrays in patients with breast cancer. JAMA Netw. Open 2(7), e197700–e197700 (2019)

    Article  Google Scholar 

  37. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  38. Vahadane, A., et al.: Structure-preserving color normalization and sparse stain separation for histological images. IEEE Trans. Med. Imaging 35(8), 1962–1971 (2016)

    Article  Google Scholar 

  39. Varma, S., Simon, R.: Bias in error estimation when using cross-validation for model selection. BMC Bioinformatics 7(1), 91 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Binder .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Seegerer, P. et al. (2020). Interpretable Deep Neural Network to Predict Estrogen Receptor Status from Haematoxylin-Eosin Images. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics