Skip to main content

Fuzzy Image Processing and Deep Learning for Microaneurysms Detection

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12090))

Abstract

Diabetic retinopathy is an eye disease generated by long-standing diabetes, and it is one of the main causes of vision loss if not diagnosed and treated properly. Diabetic retinopathy consists of several types of lesions found in the retina of diabetic individuals. One of the important lesions of diabetic retinopathy is microaneurysms, which are small red dots that appear due to the local weakness of the capillary walls. This paper presents a novel automatic microaneurysms detection method, in retinal images by employing fuzzy image processing and deep learning. Firstly, the paper explores the existing systems of diabetic retinopathy screening, with a focus on the microaneurysms detection methods and deep learning classification. The proposed system consists of two parts, namely: image preprocessing with a combination of fuzzy image processing techniques, and also the microaneurysms classification using deep neural networks. This paper investigates the capability of a combination of different fuzzy image preprocessing techniques for the detection of microaneurysms in eye fundus images. In addition to the proposed microaneurysms detection system, the paper also highlights a novel dataset for the microaneurysms detection that includes the ground truth data. The purpose of the proposed automated microaneurysm detection with digital analysis of eye fundus images is to substitute current practice that is based on manual diagnosis and visual inspection, and eventually to contribute to producing a more reliable diabetic retinopathy screening system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mathers, C.D., Loncar, D.: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3(11), e442 (2006)

    Article  Google Scholar 

  2. World of Organization. http://www.who.int/en/news-room/fact-sheets/detail/blindness-and-visual-impairment. Accessed 20 Mar 2019

  3. Cunha-vaz, J.: Diabetic Retinopathy. World Scientific Publishing Co Pte Ltd, Singapore (2010)

    Book  Google Scholar 

  4. Taylor, R., Batey, D.: Handbook of Retinal Screening in Diabetes: Diagnosis and Management. Wiley, Chichester (2012)

    Book  Google Scholar 

  5. Ministry of Health Malaysia Diabetic Retinopathy Screening Team: Handbook guide to diabetic retinopathy screening-Module 5-2012. Ministry of Health Malaysia, Putrajaya (2012)

    Google Scholar 

  6. Adal, K.M., Ali, S., Sidibe, D., Karnowski, T., Chaum, E., Meriaudeau, F.: Automated detection of microaneurysms using robust blob descriptors. SPIE Medical Imaging-Computer Aided Diagnosis, 8670-22 (2013)

    Google Scholar 

  7. Adal, K.M., Sidibe, D., Ali, S., Chaum, E., Karnowski, T.P., Meriaudeau, F.: Automated detection of microaneurysms using scale-adapted blob analysis and semi-supervised learning. Comput. Methods Programs Biomed. 114, 1–10 (2014)

    Article  Google Scholar 

  8. Akram, M.U., Khalid, S., Tariq, A., Khan, S.A., Azam, F.: Detection and classification of retinal lesions for grading of diabetic retinopathy. Comput. Biol. Med. 45, 161–171 (2014)

    Article  Google Scholar 

  9. Akram, M.U., Khalid, S., Khan, S.A.: Identification and classification of microaneurysms for aerly detection of diabetic retinopathy. Pattern Recogn. 46, 107–116 (2012)

    Article  Google Scholar 

  10. Alipour, S.H., Rabbani, H., Akhlaghi, M.R.: Diabetic retinopathy grading by digital curvelet transform. Comput. Math. Med. 2020 (2012). Article 761901. https://doi.org/10.1155/2012/761901

  11. Antal, B., Hajdu, A.: Improving microaneurysm detection in color fundus images by using context-aware approaches. Comput. Med. Imaging Graph. 37, 403–408 (2013)

    Article  Google Scholar 

  12. Aravind, C., Ponnibala, M., Vijayachitra, S.: Automatic detection of microaneurysms and classification of diabetic retinopathy images using SVM technique. In: IJCA Proceedings on International Conference on Innovations in Intelligent Instrumentation, Optimization and Electrical Sciences ICIIIOES, vol. 11, pp. 18–22 (2013)

    Google Scholar 

  13. Hatanaka, Y., Inoue, T., Okumura, S., Muramatsu, C., Fujita, H.: Automated microaneurysm detection method based on double-ring filter and feature analysis in retinal fundus images. In: Soda, P. (eds.) Proceedings of the 25th International Symposium on Computer-Based Medical Systems, CBMS, USA, pp. 1–4. IEEE (2012)

    Google Scholar 

  14. Kose, C., Sevik, U., Ikibas, C., Erdol, H.: Simple methods for segmentation and measurement of diabetic retinopathy lesions in retinal fundus images. Comput. Methods Programs Biomed. 107, 274–293 (2012)

    Article  Google Scholar 

  15. Lichode, R.V., Kulkarni, P.S.: Automatic diagnosis of diabetic retinopathy by hybrid multilayer feed forward neural network. Int. J. Sci. Eng. Technol. Res. (IJSETR) 2(9), 1727–1733 (2013)

    Google Scholar 

  16. Prakash, J., Sumanthi, K.: Detection and classification of microaneurysms for diabetic retinopathy. Int. J. Eng. Res. Appl. 4, 31–36 (2013)

    Google Scholar 

  17. Punnolil, A.: A novel approach for diagnosis and severity grading of diabetic maculopathy. In: Proceedings of the 2013 International Conference on Advances in Computing, Communications and Informatics, New York, pp. 1230–1235. IEEE (2013)

    Google Scholar 

  18. Saleh, M.D., Eswaran, C.: An automated decision-support system for non-proliferative diabetic retinopathy disease based on Mas and HAs detection. Comput. Methods Programs Biomed. 108, 186–196 (2012)

    Article  Google Scholar 

  19. Selvathi, D., Prakash, N.B., Balagopal, N.: Automated detection of diabetic retinopathy for early diagnosis using feature extraction and support vector machine. Int. J. Emerg. Technol. Adv. Eng. 2(11), 762–767 (2012)

    Google Scholar 

  20. Sopharak, A., Uyyanonvara, B., Barman, S.: Automated microaneurysm detection algorithms applied to diabetic retinopathy retinal images. Maejo Int. J. Sci. Technol. 7(2), 294–314 (2013)

    Google Scholar 

  21. Sujithkumar, S.B., Vipula, S.: Automatic detection of diabetic retinopathy in non-dilated RGB retinal fundus images. Int. J. Comput. Appl. 47(19), 26–32 (2012)

    Google Scholar 

  22. Sundhar, C., Archana, D.: Automatic screening of fundus images for detection of diabetic retinopathy. Int. J. Commun. Comput. Technol. 2(1), 100–105 (2014)

    Google Scholar 

  23. Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C.: Automatic screening and classification of diabetic retinopathy fundus images. In: Mladenov, V., Jayne, C., Iliadis, L. (eds.) EANN 2014. CCIS, vol. 459, pp. 113–122. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11071-4_11

    Chapter  Google Scholar 

  24. Rahim, S.S., Jayne, C., Palade, V., Shuttleworth, J.: Automatic detection of microaneurysms in colour fundus images for diabetic retinopathy screening. J. Neural Comput. Appl. 521, 1–16 (2015)

    Google Scholar 

  25. Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C., Omar, R.N.R.: Automatic detection of microaneurysms for diabetic retinopathy screening using fuzzy image processing. In: Iliadis, L., Jayne, C. (eds.) EANN 2015. CCIS, vol. 517, pp. 69–79. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23983-5_7

    Chapter  Google Scholar 

  26. Rahim, S.S., Palade, V., Jayne, C., Holzinger, A., Shuttleworth, J.: Detection of diabetic retinopathy and maculopathy in eye fundus images using fuzzy image processing. In: Guo, Y., Friston, K., Aldo, F., Hill, S., Peng, H. (eds.) BIH 2015. LNCS (LNAI), vol. 9250, pp. 379–388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23344-4_37

    Chapter  Google Scholar 

  27. Rahim, S.S., Palade, V., Shuttleworth, J., Jayne, C.: Automatic screening and classification of diabetic retinopathy and maculopathy using fuzzy image processing. Brain Inf. 3(4), 249–267 (2016). https://doi.org/10.1007/s40708-016-0045-3

    Article  Google Scholar 

  28. Lam, C., Yi, D., Guo, M., Lindsey, T.: Automated detection of diabetic retinopathy using deep learning. In: AMIA Joint Summits on Translational Science Proceedings. AMIA Joint Summits on Translational Science 2017, pp. 147–155 (2018)

    Google Scholar 

  29. Voets, M., Mollersen, K., Bongo, L.A.: Replication study: development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs (2018). https://arxiv.org/pdf/1803.04337.pdf

  30. Xu, K., Feng, D., Mi, H.: Deep convolutional neural network-based early automated detection of diabetic retinopathy using fundus image. Molecules 22(12), 1–7 (2017)

    Google Scholar 

  31. Rakhlin, A.: Diabetic retinopathy detection through integration of deep learning classification framework (2017). https://www.biorxiv.org/content/biorxiv/early/2018/06/19/225508.full.pdf

  32. Gulshan, V., Peng, L., Coram, M., et al.: Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs. JAMA 316, 1–9 (2016)

    Article  Google Scholar 

  33. Rajanna, A.R., Aryafar, K., Ramchandran, R., Sisson, C., Shokoufandeh, A., Ptucha, R.: Neural networks with manifold learning for diabetic retinopathy detection. In: Proceedings of IEEE Western NY Image & Signal Processing Workshop (2016). https://arxiv.org/pdf/1612.03961.pdf

  34. Pratt, H., Coenen, F., Broadbent, D.M., Harding, S.P., Zheng, Y.: Convolutional neural networks for diabetic retinopathy. Procedia Comput. Sci. 90, 1–6 (2016)

    Article  Google Scholar 

  35. Ghosh, R., Ghosh, K., Maitra, S.: Automatic detection and classification of diabetic retinopathy stages using CNN. In: 4th International Conference on Signal Processing and Integrated Networks (SPIN), USA, pp. 550–554. IEEE (2017)

    Google Scholar 

  36. Chudzik, P., Majumdar, S., Caliva, F., Al-Diri, B., Hunter, A.: Microaneurysm detection using deep learning and interleaved freezing. In: Proceedings of SPIE 10574, Medical Imaging 2018: Image Processing 1057411, pp. 1–9 (2018)

    Google Scholar 

  37. Lam, C., Yu, C., Huang, L., Rubin, D.: Retinal lesion detection with deep learning using image patches. Invest. Ophthalmol. Vis. Sci. 59(1), 590–596 (2018)

    Article  Google Scholar 

  38. Hatanaka, Y., Ogohara, K., Sunayama, W., Miyashita, M., Muramatsu, C., Fujita, H.: Automatic microaneurysms detection on retinal images using deep convolution neural network. In: International Workshop on Advanced Image Technology (IWAIT), pp. 1–2 (2018)

    Google Scholar 

  39. Dai, L., et al.: Clinical report guided retinal microaneurysm detection with multi-sieving deep learning. IEEE Trans. Med. Imaging 37(5), 1149–1161 (2018)

    Article  Google Scholar 

  40. Harangi, B., Toth, J., Hajdu, A.: Fusion of deep convolutional neural networks for microaneurysm detection in color fundus images. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3705–3708 (2018)

    Google Scholar 

  41. Shan, J., Li, L.: A deep learning method for microaneurysm detection in fundus images. In: 2016 IEEE First International Conference on Connected Health: Applications, Systems and Engineering Technologies (CHASE), pp. 357–358 (2016)

    Google Scholar 

  42. Haloi, M.: Improved microaneurysm detection using deep neural network (2016). https://arxiv.org/pdf/1505.04424.pdf

  43. Tan, J.H., et al.: Automated segmentation of exudates, haemorrhages, microaneurysms using single convolutional neural network. Inf. Sci. 420, 66–76 (2017)

    Article  Google Scholar 

  44. Toh, K.K.V., Mat Isa, N.A.: Noise adaptive fuzzy switching median filter for salt-and-pepper noise reduction. IEEE Signal Process. Lett. 17(3), 281–284 (2010)

    Article  Google Scholar 

  45. Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)

    Article  Google Scholar 

  46. Hu, Z., Tan, J., Wang, Z., Zhang, K., Zhang, L., Sun, Q.: Deep learning for image-based cancer detection and diagnosis – a survey. Pattern Recogn. 83, 134–149 (2018)

    Article  Google Scholar 

  47. Couture, H.D., et al.: Image analysis with deep learning to predict breast cancer grade, ER status, histologic subtype, and intrinsic subtype. NPJ Breast Cancer 30, 1–8 (2018)

    Google Scholar 

  48. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa A., Weippl E. (eds) Machine Learning and Knowledge Extraction, CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

  49. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Mueller, H.: causability and explainability of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Discovery, 9(4) (2019). https://doi.org/10.1002/widm.1312

  50. Pearl, J.: Causality: Models, Reasoning, and Inference (2nd Ed.). Cambridge, Cambridge University Press (2009)

    Google Scholar 

  51. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop?. Brain Inf. 3(2), 119–131. https://doi.org/10.1007/s40708-016-0042-6. Springer Nature

Download references

Acknowledgements

This project is part of a postdoctoral research currently being carried out at the Faculty of Engineering, Environment and Computing, Coventry University, United Kingdom. The deepest gratitude and thanks go to the Universiti Teknikal Malaysia Melaka (UTeM) for sponsoring this postdoctoral research. The authors are thankful to the Ministry of Health Malaysia and the Melaka Hospital, Malaysia, for providing the database of retinal images and also for the manual grading done by the experts.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarni Suhaila Rahim .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rahim, S.S., Palade, V., Almakky, I., Holzinger, A. (2020). Fuzzy Image Processing and Deep Learning for Microaneurysms Detection. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics