Skip to main content

Deep Learning Methods for Mitosis Detection in Breast Cancer Histopathological Images: A Comprehensive Review

  • Chapter
  • First Online:
Artificial Intelligence and Machine Learning for Digital Pathology

Abstract

In breast cancer histology, there are three important features for tumor grading, where the proliferation score presents a key component. The mitotic count strategy is among the used methods to predict this score. However, this task is tedious and time consuming for pathologists. To simplify their work, there is a recognized need for computer-aided diagnostic systems (CADs). Several attempts have been made to automate the mitosis detection based on both machine and deep learning (DL) methods. This study aims to provide the readers with a medical knowledge on mitosis detection and DL methods, review and compare the relevant literature on DL methods for mitosis detection on H&E histopathological images, and finally discuss the remaining challenges and some of the perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://tupac.tue-image.nl/node/3.

References

  1. Agoff, S.N., Lawton, T.J.: Papillary lesions of the breast with and without atypical ductal hyperplasia: can we accurately predict benign behavior from core needle biopsy? Am. J. Clin. Pathol. 122(3), 440–443 (2004)

    Google Scholar 

  2. Akram, S.U., Qaiser, T., Graham, S., Kannala, J., Heikkilä, J., Rajpoot, N.: Leveraging unlabeled whole-slide-images for mitosis detection. In: Stoyanov, D., et al. (eds.) OMIA/COMPAY -2018. LNCS, vol. 11039, pp. 69–77. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00949-6_9

    Chapter  Google Scholar 

  3. Al-Janabi, S., van Slooten, H.J., Visser, M., Van Der Ploeg, T., Van Diest, P.J., Jiwa, M.: Evaluation of mitotic activity index in breast cancer using whole slide digital images. PLoS One 8(12), e82576 (2013)

    Google Scholar 

  4. Albarqouni, S., Baur, C., Achilles, F., Belagiannis, V., Demirci, S., Navab, N.: AggNet: deep learning from crowds for mitosis detection in breast cancer histology images. IEEE Trans. Med. Imaging 35(5), 1313–1321 (2016)

    Google Scholar 

  5. Albayrak, A., Bilgin, G.: Mitosis detection using convolutional neural network based features. In: IEEE 17th International Symposium on Computational Intelligence and Informatics (CINTI), pp. 000335–000340. IEEE (2016)

    Google Scholar 

  6. Anwar, S.M., Majid, M., Qayyum, A., Awais, M., Alnowami, M., Khan, M.K.: Medical image analysis using convolutional neural networks: a review. J. Med. Syst. 42(11), 226 (2018)

    Google Scholar 

  7. Beevi, K.S., Nair, M.S., Bindu, G.: Automatic mitosis detection in breast histopathology images using convolutional neural network based deep transfer learning. Biocybern. Biomed. Eng. 39(1), 214–223 (2019)

    Google Scholar 

  8. Beikman, S., Gordon, P., Ferrari, S., Siegel, M., Zalewski, M.A., Rosenzweig, M.Q.: Understanding the implications of the breast cancer pathology report: a case study. J. Adv. Pract. Oncol. 4(3), 176 (2013)

    Google Scholar 

  9. Bejnordi, B.E., et al.: Stain specific standardization of whole-slide histopathological images. IEEE Trans. Med. Imaging 35(2), 404–415 (2015)

    Google Scholar 

  10. Beresford, M.J., Wilson, G.D., Makris, A.: Measuring proliferation in breast cancer: practicalities and applications. Breast Cancer Res. 8(6), 216 (2006)

    Google Scholar 

  11. Bonert, M., Tate, A.J.: Mitotic counts in breast cancer should be standardized with a uniform sample area. Biomed. Eng. Online 16(1), 28 (2017)

    Google Scholar 

  12. Bray, F., Ferlay, J., Soerjomataram, I., Siegel, R.L., Torre, L.A., Jemal, A.: Global cancer statistics 2018: globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68(6), 394–424 (2018)

    Google Scholar 

  13. Burt, J.R., Torosdagli, N., Khosravan, N., RaviPrakash, H., Mortazi, A., Tissavirasingham, F., Hussein, S., Bagci, U.: Deep learning beyond cats and dogs: recent advances in diagnosing breast cancer with deep neural networks. Br. J. Radiol. 91(1089), 20170545 (2018)

    Google Scholar 

  14. Cao, C., et al.: Deep learning and its applications in biomedicine. Genom. Proteom. Bioinf. 16(1), 17–32 (2018)

    MathSciNet  Google Scholar 

  15. Chen, H., Dou, Q., Wang, X., Qin, J., Heng, P.A.: Mitosis detection in breast cancer histology images via deep cascaded networks. In: Thirtieth AAAI Conference on Artificial Intelligence (2016)

    Google Scholar 

  16. Chen, H., Wang, X., Heng, P.A.: Automated mitosis detection with deep regression networks. In: IEEE 13th International Symposium on Biomedical Imaging (ISBI), pp. 1204–1207. IEEE (2016)

    Google Scholar 

  17. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Semantic image segmentation with deep convolutional nets and fully connected CRFs. arXiv preprint arXiv:1412.7062 (2014)

  18. Cireşan, D.C., Giusti, A., Gambardella, L.M., Schmidhuber, J.: Mitosis detection in breast cancer histology images with deep neural networks. In: Mori, K., Sakuma, I., Sato, Y., Barillot, C., Navab, N. (eds.) MICCAI 2013. LNCS, vol. 8150, pp. 411–418. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40763-5_51

    Chapter  Google Scholar 

  19. Cruz-Roa, A., et al.: High-throughput adaptive sampling for whole-slide histopathology image analysis (HASHI) via convolutional neural networks: application to invasive breast cancer detection. PLoS One 13(5), e0196828 (2018)

    Google Scholar 

  20. Dalmış, M.U., et al.: Using deep learning to segment breast and fibroglandular tissue in MRI volumes. Med. Phys. 44(2), 533–546 (2017)

    Google Scholar 

  21. Das, D.K., Dutta, P.K.: Efficient automated detection of mitotic cells from breast histological images using deep convolution neutral network with wavelet decomposed patches. Comput. Biol. Med. 104, 29–42 (2019)

    Google Scholar 

  22. van Diest, P.J., et al.: Reproducibility of mitosis counting in 2,469 breast cancer specimens: results from the multicenter morphometric mammary carcinoma project. Hum. Pathol. 23(6), 603–607 (1992)

    Google Scholar 

  23. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Google Scholar 

  24. Farahani, N., Parwani, A.V., Pantanowitz, L.: Whole slide imaging in pathology: advantages, limitations, and emerging perspectives. Pathol. Lab. Med. Int. 7, 23–33 (2015)

    Google Scholar 

  25. Fischer, A.H., Jacobson, K.A., Rose, J., Zeller, R.: Hematoxylin and eosin staining of tissue and cell sections. Cold Spring Harbor Protoc. 2008(5), pdb-prot4986 (2008)

    Google Scholar 

  26. Fishman, J.E., Milikowski, C., Ramsinghani, R., Velasquez, M.V., Aviram, G.: US-guided core-needle biopsy of the breast: how many specimens are necessary? Radiology 226(3), 779–782 (2003)

    Google Scholar 

  27. Frierson Jr., H.F., et al.: Interobserver reproducibility of the nottingham modification of the bloom and richardson histologic grading scheme for infiltrating ductal carcinoma. Am. J. Clin. Pathol. 103(2), 195–198 (1995)

    Google Scholar 

  28. Fukushima, K., Miyake, S.: Neocognitron: a self-organizing neural network model for a mechanism of visual pattern recognition. In: Amari, S., Arbib, M.A. (eds.) Competition and Cooperation in Neural Nets. Lecture Notes in Biomathematics, vol. 45, pp. 267–285. Springer, Heidelberg (1982)

    Google Scholar 

  29. Gal, R., Rath-Wolfson, L., Rosenblatt, Y., Halpern, M., Schwartz, A., Koren, R.: An improved technique for mitosis counting. Int. J. Surg. Pathol. 13(2), 161–165 (2005)

    Google Scholar 

  30. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  31. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Region-based convolutional networks for accurate object detection and segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 38(1), 142–158 (2015)

    Google Scholar 

  32. Hadsell, R., et al.: Learning long-range vision for autonomous off-road driving. J. Field Robot. 26(2), 120–144 (2009)

    Google Scholar 

  33. Hamidinekoo, A., Denton, E., Rampun, A., Honnor, K., Zwiggelaar, R.: Deep learning in mammography and breast histology, an overview and future trends. Med. Image Anal. 47, 45–67 (2018)

    Google Scholar 

  34. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  35. He, X., Deng, L.: Deep learning for image-to-text generation: a technical overview. IEEE Signal Process. Mag. 34(6), 109–116 (2017)

    Google Scholar 

  36. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainabilty of artificial intelligence in medicine. Wiley Interdisc. Rev. Data Min. Knowl. Disc. 9, e1312 (2019)

    Google Scholar 

  37. Howard, A.G., et al.: MobileNets: efficient convolutional neural networks for mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

  38. Humphrey, A., Sur, M., Ulrich, D., Sherman, S.: Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex. J. Comp. Neurol. 233, 159–189 (1985)

    Google Scholar 

  39. Irshad, H., Veillard, A., Roux, L., Racoceanu, D.: Methods for nuclei detection, segmentation, and classification in digital histopathology: a review–current status and future potential. IEEE Rev. Biomed. Eng. 7, 97–114 (2013)

    Google Scholar 

  40. Janowczyk, A., Madabhushi, A.: Deep learning for digital pathology image analysis: a comprehensive tutorial with selected use cases. J. Pathol. Inf. 7, 29 (2016)

    Google Scholar 

  41. Kallenberg, M., et al.: Unsupervised deep learning applied to breast density segmentation and mammographic risk scoring. IEEE Trans. Med. Imaging 35(5), 1322–1331 (2016)

    Google Scholar 

  42. Kaman, E., Smeulders, A., Verbeek, P., Young, I., Baak, J.: Image processing for mitoses in sections of breast cancer: a feasibility study. Cytometry J. Int. Soc. Anal. Cytol. 5(3), 244–249 (1984)

    Google Scholar 

  43. Kausar, T., Wang, M., Wu, B., Idrees, M., Kanwal, B.: Multi-scale deep neural network for mitosis detection in histological images. In: International Conference on Intelligent Informatics and Biomedical Sciences (ICIIBMS), vol. 3, pp. 47–51. IEEE (2018)

    Google Scholar 

  44. Khan, A.M., Rajpoot, N., Treanor, D., Magee, D.: A nonlinear mapping approach to stain normalization in digital histopathology images using image-specific color deconvolution. IEEE Trans. Biomed. Eng. 61(6), 1729–1738 (2014)

    Google Scholar 

  45. Klein, G., Kim, Y., Deng, Y., Senellart, J., Rush, A.M.: OpenNMT: open-source toolkit for neural machine translation. arXiv preprint arXiv:1701.02810 (2017)

  46. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)

    Google Scholar 

  47. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Google Scholar 

  48. Li, C., Wang, X., Liu, W., Latecki, L.J.: Deepmitosis: mitosis detection via deep detection, verification and segmentation networks. Med. Image Anal. 45, 121–133 (2018)

    Google Scholar 

  49. Li, Y., Mercan, E., Knezevitch, S., Elmore, J.G., Shapiro, L.G.: Efficient and accurate mitosis detection-a lightweight RCNN approach. In: ICPRAM, pp. 69–77 (2018)

    Google Scholar 

  50. Litjens, G., et al.: A survey on deep learning in medical image analysis. Med. Image Anal. 42, 60–88 (2017)

    Google Scholar 

  51. Liu, A., Li, K., Kanade, T.: Mitosis sequence detection using hidden conditional random fields. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 580–583. IEEE (2010)

    Google Scholar 

  52. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  53. Ma, M., Shi, Y., Li, W., Gao, Y., Xu, J.: A novel two-stage deep method for mitosis detection in breast cancer histology images. In: 24th International Conference on Pattern Recognition (ICPR), pp. 3892–3897. IEEE (2018)

    Google Scholar 

  54. Macenko, M., et al.: A method for normalizing histology slides for quantitative analysis. In: IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 1107–1110. IEEE (2009)

    Google Scholar 

  55. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016)

    Google Scholar 

  56. Makki, J.: Diversity of breast carcinoma: histological subtypes and clinical relevance. Clin. Med. Insights Pathol. 8, 23–31 (2015). CPath-S31563

    Google Scholar 

  57. Malon, C., Miller, M., Burger, H.C., Cosatto, E., Graf, H.P.: Identifying histological elements with convolutional neural networks. In: Proceedings of the 5th International Conference on Soft Computing as Transdisciplinary Science and Technology, pp. 450–456. ACM (2008)

    Google Scholar 

  58. Malon, C.D., Cosatto, E.: Classification of mitotic figures with convolutional neural networks and seeded blob features. J. Pathol. Inform. 4, 9 (2013)

    Google Scholar 

  59. Miotto, R., Wang, F., Wang, S., Jiang, X., Dudley, J.T.: Deep learning for healthcare: review, opportunities and challenges. Briefings Bioinform. 19(6), 1236–1246 (2017)

    Google Scholar 

  60. Orchid, N.N., Puthanpurayil, S.: Factors affecting the assessment of mitotic count in histopathological sections of tumors: a study of interobserver and intraobserver variability. Int. J. Res. Med. Sci. 4(3), 762 (2016)

    Google Scholar 

  61. Oyama, T., Koibuchi, Y., McKee, G.: Core needle biopsy (CNB) as a diagnostic method for breast lesions: comparison with fine needle aspiration cytology (FNA). Breast Cancer 11(4), 339–342 (2004)

    Google Scholar 

  62. Paeng, K., Hwang, S., Park, S., Kim, M.: A unified framework for tumor proliferation score prediction in breast histopathology. In: Cardoso, M.J., et al. (eds.) DLMIA/ML-CDS -2017. LNCS, vol. 10553, pp. 231–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67558-9_27

    Chapter  Google Scholar 

  63. Pezzotti, N., Höllt, T., Van Gemert, J., Lelieveldt, B.P., Eisemann, E., Vilanova, A.: DeepEyes: progressive visual analytics for designing deep neural networks. IEEE Trans. Visual Comput. Graphics 24(1), 98–108 (2017)

    Google Scholar 

  64. Rao, S.: MITOS-RCNN: a novel approach to mitotic figure detection in breast cancer histopathology images using region based convolutional neural networks. arXiv preprint arXiv:1807.01788 (2018)

  65. Ravì, D., et al.: Deep learning for health informatics. IEEE J. Biomed. Health Inform. 21(1), 4–21 (2016)

    Google Scholar 

  66. Reinhard, E., Adhikhmin, M., Gooch, B., Shirley, P.: Color transfer between images. IEEE Comput. Graphics Appl. 21(5), 34–41 (2001)

    Google Scholar 

  67. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems, pp. 91–99 (2015)

    Google Scholar 

  68. Roux, L., et al.: Mitos & atypia. Image Pervasive Access Lab (IPAL), Agency for Science and Technology & Research Institute for Infocom Research, Singapore, Technical report, vol. 1, pp. 1–8 (2014)

    Google Scholar 

  69. Roux, L., et al.: Mitosis detection in breast cancer histological images an ICPR 2012 contest. J. Pathol. Inform. 4, 8 (2013)

    Google Scholar 

  70. Saafin, W., Schaefer, G.: Pre-processing techniques for colour digital pathology image analysis. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 551–560. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_48

    Chapter  Google Scholar 

  71. Saha, M., Chakraborty, C., Racoceanu, D.: Efficient deep learning model for mitosis detection using breast histopathology images. Comput. Med. Imaging Graph. 64, 29–40 (2018)

    Google Scholar 

  72. Samala, R.K., Chan, H.P., Hadjiiski, L., Helvie, M.A., Wei, J., Cha, K.: Mass detection in digital breast tomosynthesis: deep convolutional neural network with transfer learning from mammography. Med. Phys. 43(12), 6654–6666 (2016)

    Google Scholar 

  73. Sandler, M., Howard, A., Zhu, M., Zhmoginov, A., Chen, L.C.: MobileNetV2: inverted residuals and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4510–4520 (2018)

    Google Scholar 

  74. Shah, M., Wang, D., Rubadue, C., Suster, D., Beck, A.: Deep learning assessment of tumor proliferation in breast cancer histological images. In: IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 600–603. IEEE (2017)

    Google Scholar 

  75. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  76. Su, Y.T., Lu, Y., Chen, M., Liu, A.A.: Spatiotemporal joint mitosis detection using CNN-LSTM network in time-lapse phase contrast microscopy images. IEEE Access 5, 18033–18041 (2017)

    Google Scholar 

  77. Szegedy, C., Ioffe, S., Vanhoucke, V., Alemi, A.A.: Inception-v4, Inception-ResNet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

  78. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  79. Tajbakhsh, N., et al.: Convolutional neural networks for medical image analysis: full training or fine tuning? IEEE Trans. Med. Imaging 35(5), 1299–1312 (2016)

    Google Scholar 

  80. Tellez, D., et al.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018)

    Google Scholar 

  81. Ten Kate, T., Belien, J., Smeulders, A., Baak, J.: Method for counting mitoses by image processing in Feulgen stained breast cancer sections. Cytometry J. Int. Soc. Anal. Cytol. 14(3), 241–250 (1993)

    Google Scholar 

  82. Jimenez-del Toro, O., et al.: Analysis of histopathology images: from traditional machine learning to deep learning. In: Biomedical Texture Analysis, pp. 281–314. Elsevier (2017)

    Google Scholar 

  83. Veta, M., et al.: Predicting breast tumor proliferation from whole-slide images: the TUPAC16 challenge. Med. Image Anal. 54, 111–121 (2019)

    Google Scholar 

  84. Veta, M., Pluim, J.P., Van Diest, P.J., Viergever, M.A.: Breast cancer histopathology image analysis: a review. IEEE Trans. Biomed. Eng. 61(5), 1400–1411 (2014)

    Google Scholar 

  85. Veta, M., Van Diest, P.J., Jiwa, M., Al-Janabi, S., Pluim, J.P.: Mitosis counting in breast cancer: object-level interobserver agreement and comparison to an automatic method. PLoS One 11(8), e0161286 (2016)

    Google Scholar 

  86. Veta, M., et al.: Assessment of algorithms for mitosis detection in breast cancer histopathology images. Med. Image Anal. 20(1), 237–248 (2015)

    Google Scholar 

  87. Wahab, N., Khan, A., Lee, Y.S.: Two-phase deep convolutional neural network for reducing class skewness in histopathological images based breast cancer detection. Comput. Biol. Med. 85, 86–97 (2017)

    Google Scholar 

  88. Wang, H., et al.: Mitosis detection in breast cancer pathology images by combining handcrafted and convolutional neural network features. J. Med. Imaging 1(3), 034003 (2014)

    Google Scholar 

  89. Wang, X., Ma, H., Chen, X., You, S.: Edge preserving and multi-scale contextual neural network for salient object detection. IEEE Trans. Image Process. 27(1), 121–134 (2017)

    MathSciNet  MATH  Google Scholar 

  90. Ward, E.M., et al.: Cancer statistics: breast cancer in situ. CA Cancer J. Clin. 65(6), 481–495 (2015)

    Google Scholar 

  91. Willems, S.M., Van Deurzen, C., Van Diest, P.: Diagnosis of breast lesions: fine-needle aspiration cytology or core needle biopsy? A review. J. Clin. Pathol. 65(4), 287–292 (2012)

    Google Scholar 

  92. Wollmann, T., Rohr, K.: Automatic grading of breast cancer whole-slide histopathology images. Bildverarbeitung für die Medizin 2017. I, pp. 249–253. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54345-0_56

    Chapter  Google Scholar 

  93. Wollmann, T., Rohr, K.: Deep residual Hough voting for mitotic cell detection in histopathology images. In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 341–344. IEEE (2017)

    Google Scholar 

  94. Wu, B., et al.: FF-CNN: an efficient deep neural network for mitosis detection in breast cancer histological images. In: Valdés Hernández, M., González-Castro, V. (eds.) MIUA 2017. CCIS, vol. 723, pp. 249–260. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60964-5_22

    Chapter  Google Scholar 

  95. Xing, F., Yang, L.: Robust nucleus/cell detection and segmentation in digital pathology and microscopy images: a comprehensive review. IEEE Rev. Biomed. Eng. 9, 234–263 (2016)

    Google Scholar 

  96. Xu, J., Luo, X., Wang, G., Gilmore, H., Madabhushi, A.: A deep convolutional neural network for segmenting and classifying epithelial and stromal regions in histopathological images. Neurocomputing 191, 214–223 (2016)

    Google Scholar 

  97. Xu, J., Zhou, C., Lang, B., Liu, Q.: Deep learning for histopathological image analysis: towards computerized diagnosis on cancers. In: Lu, L., Zheng, Y., Carneiro, G., Yang, L. (eds.) Deep Learning and Convolutional Neural Networks for Medical Image Computing. ACVPR, pp. 73–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-42999-1_6

    Chapter  Google Scholar 

  98. Yap, M.H., et al.: End-to-end breast ultrasound lesions recognition with a deep learning approach. In: Medical Imaging 2018: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 10578, p. 1057819. International Society for Optics and Photonics (2018)

    Google Scholar 

  99. Zerhouni, E., Lányi, D., Viana, M., Gabrani, M.: Wide residual networks for mitosis detection. In: IEEE 14th International Symposium on Biomedical Imaging (ISBI 2017), pp. 924–928. IEEE (2017)

    Google Scholar 

  100. Zhang, R., et al.: Real-time user-guided image colorization with learned deep priors. arXiv preprint arXiv:1705.02999 (2017)

  101. Zhang, X., Zhou, X., Lin, M., Sun, J.: ShuffleNet: an extremely efficient convolutional neural network for mobile devices. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6848–6856 (2018)

    Google Scholar 

  102. Zhi, H., Ou, B., Luo, B.M., Feng, X., Wen, Y.L., Yang, H.Y.: Comparison of ultrasound elastography, mammography, and sonography in the diagnosis of solid breast lesions. J. Ultrasound Med. 26(6), 807–815 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nassima Dif .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Dif, N., Elberrichi, Z. (2020). Deep Learning Methods for Mitosis Detection in Breast Cancer Histopathological Images: A Comprehensive Review. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics