Skip to main content

Expectations of Artificial Intelligence for Pathology

  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12090))

Abstract

Within the last ten years, essential steps have been made to bring artificial intelligence (AI) successfully into the field of pathology. However, most pathologists are still far away from using AI in daily pathology practice. If one leaves the pathology annihilation model, this paper focuses on tasks, which could be solved, and which could be done better by AI, or image-based algorithms, compared to a human expert. In particular, this paper focuses on the needs and demands of surgical pathologists; examples include: Finding small tumour deposits within lymph nodes, detection and grading of cancer, quantification of positive tumour cells in immunohistochemistry, pre-check of Papanicolaou-stained gynaecological cytology in cervical cancer screening, text feature extraction, text interpretation for tumour-coding error prevention and AI in the next-generation virtual autopsy. However, in order to make substantial progress in both fields it is important to intensify the cooperation between medical AI experts and pathologists.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arvaniti, E., et al.: Automated gleason grading of prostate cancer tissue microarrays via deep learning. Sci. Rep. 8(1), 1–11 (2018). https://doi.org/10.1038/s41598-018-30535-1

    Article  Google Scholar 

  2. Bandi, P., et al.: From detection of individual metastases to classification of lymph node status at the patient level: the camelyon17 challenge. IEEE Trans. Med. Imaging 38(2), 550–560 (2018). https://doi.org/10.1109/TMI.2018.2867350

    Article  Google Scholar 

  3. Bulten, W., et al.: Automated deep-learning system for gleason grading of prostate cancer using biopsies: a diagnostic study. Lancet Oncol. (2020). https://doi.org/10.1016/S1470-2045(19)30739-9

  4. Cengel, K.A., et al.: Effectiveness of the surepath liquid-based pap test in automated screening and in detection of hsil. Diagn. Cytopathol. 29(5), 250–255 (2003). https://doi.org/10.1002/dc.10373

    Article  Google Scholar 

  5. Chang, H.Y., et al.: Artificial intelligence in pathology. J. Pathol. Transl. Med. 53(1), 1–12 (2019). https://doi.org/10.4132/jptm.2018.12.16

    Article  Google Scholar 

  6. Cibula, D., McCluggage, W.G.: Sentinel lymph node (SLN) concept in cervical cancer: current limitations and unanswered questions. Gynecol. Oncol. 152(1), 202–207 (2019). https://doi.org/10.1016/j.ygyno.2018.10.007

    Article  Google Scholar 

  7. Duggan, M.A., Brasher, P.: Paired comparison of manual and automated pap test screening using the papnet system. Diagn. Cytopathol. 17(4), 248–254 (1997)

    Article  Google Scholar 

  8. Ellis, I., et al.: The 2019 who classification of tumours of the breast. Histopathology (2020). https://doi.org/10.1111/his.14091

    Article  Google Scholar 

  9. Elsheikh, T.M., Austin, R.M., Chhieng, D.F., Miller, F.S., Moriarty, A.T., Renshaw, A.A.: American society of cytopathology workload recommendations for automated pap test screening: developed by the productivity and quality assurance in the era of automated screening task force. Diagn. Cytopathol. 41(2), 174–178 (2013). https://doi.org/10.1002/dc.22817

    Article  Google Scholar 

  10. Epstein, J.I., Amin, M.B., Reuter, V.E., Humphrey, P.A.: The 2014 international society of urological pathology (ISUP) consensus conference on gleason grading of prostatic carcinoma: definition of grading patterns and proposal for a new grading system. Am. J. Surg. Pathol. 40(2), 244–252 (2017). https://doi.org/10.1097/PAS.0000000000000530

    Article  Google Scholar 

  11. Epstein, J.I., Amin, M.B., Reuter, V.E., Humphrey, P.A.: Contemporary gleason grading of prostatic carcinoma: an update with discussion on practical issues to implement the 2014 international society of urological pathology (isup) consensus conference on gleason grading of prostatic carcinoma. Am. J. Surg. Pathol. 41(4), e1–e7 (2017). https://doi.org/10.1097/pas.0000000000000820

    Article  Google Scholar 

  12. Fulawka, L., Halon, A.: Proliferation index evaluation in breast cancer using imagej and immunoratio applications. Anticancer Res. 36(8), 3965–3972 (2016)

    Google Scholar 

  13. Garcia-Etienne, C.A., et al.: Management of the axilla in patients with breast cancer and positive sentinel lymph node biopsy: an evidence-based update in a european breast center. Eur. J. Surg. Oncol. 46(1), 15–23 (2020). https://doi.org/10.1016/j.ejso.2019.08.013

    Article  Google Scholar 

  14. Goebel, R., et al.: Explainable AI: the New 42? In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 295–303. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_21

    Chapter  Google Scholar 

  15. Granter, S.R., Beck, A.H., Papke, D.J.: Alphago, deep learning, and the future of the human microscopist. Arch. Pathol. Lab. Med. 141(5), 619–621 (2017). https://doi.org/10.5858/arpa.2016-0471-ED

    Article  Google Scholar 

  16. Hegde, N., et al.: Similar image search for histopathology: smily. NPJ Digit. Med. 2(1), 1–9 (2019). https://doi.org/10.1038/s41746-019-0131-z

    Article  MathSciNet  Google Scholar 

  17. Herrmann, M.D., et al.: Implementing the DICOM standard for digital pathology. Journal of pathology informatics 9, 37 (2018)

    Article  Google Scholar 

  18. Holzinger, A.: Usability engineering methods for software developers. Commun. ACM 48(1), 71–74 (2005). https://doi.org/10.1145/1039539.1039541

    Article  Google Scholar 

  19. Holzinger, A.: Interactive machine learning for health informatics: when do we need the human-in-the-loop? Brain Inform. 3(2), 119–131 (2016). https://doi.org/10.1007/s40708-016-0042-6

    Article  Google Scholar 

  20. Holzinger, A.: From machine learning to explainable AI. In: 2018 World Symposium on Digital Intelligence for Systems and Machines (IEEE DISA), pp. 55–66. IEEE (2018). https://doi.org/10.1109/DISA.2018.8490530

  21. Holzinger, A.: Introduction to machine learning and knowledge extraction (make). Mach. Learn. Knowl. Extr. 1(1), 1–20 (2019). https://doi.org/10.3390/make1010001

    Article  Google Scholar 

  22. Holzinger, A., Kickmeier-Rust, M., Müller, H.: KANDINSKY patterns as IQ-test for machine learning. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2019. LNCS, vol. 11713, pp. 1–14. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-29726-8_1

    Chapter  Google Scholar 

  23. Holzinger, A., Kieseberg, P., Weippl, E., Tjoa, A.M.: Current advances, trends and challenges of machine learning and knowledge extraction: from machine learning to explainable AI. In: Holzinger, A., Kieseberg, P., Tjoa, A.M., Weippl, E. (eds.) CD-MAKE 2018. LNCS, vol. 11015, pp. 1–8. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99740-7_1

    Chapter  Google Scholar 

  24. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainability of artificial intelligence in medicine. WIRES Data Min. Knowl. 9(4), e1312 (2019). https://doi.org/10.1002/widm.1312

    Article  Google Scholar 

  25. Holzinger, A., et al.: Machine learning and knowledge extraction in digital pathology needs an integrative approach. In: Holzinger, A., Goebel, R., Ferri, M., Palade, V. (eds.) Towards Integrative Machine Learning and Knowledge Extraction. LNCS (LNAI), vol. 10344, pp. 13–50. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69775-8_2

    Chapter  Google Scholar 

  26. Kargl, M., Regitnig, P., Mueller, H., Holzinger, A.: TOWARDS A BETTER UNDERSTANDING OF THE WORKFLOWS: MODELING PATHOLOGY PROCESSES IN VIEW OF FUTURE AI INTEGRATION. In: Springer LNCS, vol. 12090, p. 16. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50402-1_7

  27. Keyhani-Rofagha, S., Palma, T., O’Toole, R.V.: Automated screening for quality control using PAPNET: a study of 638 negative Pap smears. Diagn. Cytopathol. 14(4), 316–320 (1996)

    Article  Google Scholar 

  28. Kott, O., et al.: Development of a deep learning algorithm for the histopathologic diagnosis and gleason grading of prostate cancer biopsies: a pilot study. Eur. Urol. Focus (2020). https://doi.org/10.1016/j.euf.2019.11.003

  29. Levenson, R.M., Krupinski, E.A., Navarro, V.M., Wasserman, E.A.: Pigeons (Columba livia) as trainable observers of pathology and radiology breast cancer images. PLoS ONE 10(11), e0141357 (2015). https://doi.org/10.1371/journal.pone.0141357

    Article  Google Scholar 

  30. Liu, Y., et al.: Artificial intelligence-based breast cancer nodal metastasis detection: insights into the black box for pathologists. Arch. Pathol. Lab. Med. 143(7), 859–868 (2019). https://doi.org/10.5858/arpa.2018-0147-OA

    Article  Google Scholar 

  31. Lodish, H., Berk, A., Zipursky, S., Matsudaira, P., Baltimore, D., Darnell, J.: Tumor cells and the onset of cancer. In: Molecular Cell Biology, 4th ed. Freeman, New York (2000)

    Google Scholar 

  32. Madabhushi, A., Lee, G.: Image analysis and machine learning in digital pathology: challenges and opportunities. Med. Image Anal. 33, 170–175 (2016). https://doi.org/10.1016/j.media.2016.06.037

    Article  Google Scholar 

  33. Müller, H., Dagher, G., Loibner, M., Stumptner, C., Kungl, P., Zatloukal, K.: Biobanks for life sciences and personalized medicine: importance of standardization, biosafety, biosecurity, and data management. Curr. Opin. Biotechnol. 65, 45–51 (2020)

    Article  Google Scholar 

  34. Müller, H., et al.: State-of-the-art and future challenges in the integration of biobank catalogues. In: Holzinger, A., Röcker, C., Ziefle, M. (eds.) Smart Health. LNCS, vol. 8700, pp. 261–273. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16226-3_11

    Chapter  Google Scholar 

  35. Nagpal, K., et al.: Development and validation of a deep learning algorithm for improving gleason scoring of prostate cancer. Nat. Digit. Med. (NPJ) 2(1), 1–10 (2019). https://doi.org/10.1038/s41746-019-0112-2

    Article  Google Scholar 

  36. Nakamura, Y.: The role and necessity of sentinel lymph node biopsy for invasive melanoma. Front. Med. 6(231), 1–7 (2019). https://doi.org/10.3389/fmed.2019.00231

    Article  Google Scholar 

  37. Napolitano, G., Marshall, A., Hamilton, P., Gavin, A.T.: Machine learning classification of surgical pathology reports and chunk recognition for information extraction noise reduction. Artif. Intell. Med. 70, 77–83 (2016). https://doi.org/10.1016/j.artmed.2016.06.001

    Article  Google Scholar 

  38. Niazi, M.K., Parwani, A.V., Gurcan, M.N.: Digital pathology and artificial intelligence. Lancet Oncol. 20(5), e253–e261 (2019). https://doi.org/10.1016/S1470-2045(19)30154-8

    Article  Google Scholar 

  39. O’Sullivan, S., Holzinger, A., Wichmann, D., Saldiva, P.H.N., Sajid, M.I., Zatloukal, K.: Virtual autopsy: machine learning and AI provide new opportunities for investigating minimal tumor burden and therapy resistance by cancer patients. Autops. Case Rep. 8(1), e2018003 (2018). https://doi.org/10.4322/acr.2018.003

    Article  Google Scholar 

  40. O’Sullivan, S., Holzinger, A., Zatloukal, K., Saldiva, P., Sajid, M.I., Dominic, W.: Machine learning enhanced virtual autopsy. Autops. Case Rep. 7(4), 3–7 (2017). https://doi.org/10.4322/acr.2017.037

    Article  Google Scholar 

  41. Paden, B., Cap, M., Yong, S.Z., Yershov, D., Frazzoli, E.: A survey of motion planning and control techniques for self-driving urban vehicles. IEEE Trans. Intell. Veh. 1(1), 33–55 (2016). https://doi.org/10.1109/TIV.2016.2578706

    Article  Google Scholar 

  42. Pohn, B., Kargl, M., Reihs, R., Holzinger, A., Zatloukal, K., Müller, H.: Towards a deeper understanding of how a pathologist makes a diagnosis: Visualization of the diagnostic process in histopathology. In: IEEE Symposium on Computers and Communications (ISCC). IEEE (2019). https://doi.org/10.1109/ISCC47284.2019.8969598

  43. Poojitha, U.P., Sharma, S.L.: Hybrid unified deep learning network for highly precise gleason grading of prostate cancer. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 899–903. IEEE (2019). https://doi.org/10.1109/EMBC.2019.8856912

  44. Reihs, R., Pohn, B., Zatloukal, K., Holzinger, A., Müller, H.: NLP for the generation of training data sets for ontology-guided weakly-supervised machine learning in digital pathology. In: 2019 IEEE Symposium on Computers and Communications (ISCC), pp. 1072–1076. IEEE (2019)

    Google Scholar 

  45. Salto-Tellez, M., Maxwell, P., Hamilton, P.: Artificial intelligence–the third revolution in pathology. Histopathology 74(3), 372–376 (2019). https://doi.org/10.1111/his.13760

    Article  Google Scholar 

  46. Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.): Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. LNCS (LNAI), vol. 11700. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28954-6

  47. Schneeberger, D., Stoeger, K., Holzinger, A.: The European legal framework for medical AI. In: International Cross-Domain Conference for Machine Learning and Knowledge Extraction, Fourth IFIP TC 5, TC 12, WG 8.4, WG 8.9, WG 12.9 International Cross-Domain Conference, CD-MAKE 2020, Proceedings, p. in print. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-29726-8

  48. Smeulders, A., Van Ginneken, A.: An analysis of pathology knowledge and decision making for the development of artificial intelligence-based consulting systems. Anal. Quant. Cytol. Histol. 11(3), 154–165 (1989)

    Google Scholar 

  49. Sompawong, N., et al.: Automated pap smear cervical cancer screening using deep learning. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE (2019). https://doi.org/10.1109/EMBC.2019.8856369

  50. Tang, R., et al.: Machine learning to parse breast pathology reports in Chinese. Breast Cancer Res. Treat. 169(2), 243–250 (2018). https://doi.org/10.1007/s10549-018-4668-3

    Article  Google Scholar 

  51. Tellez, D., et al.: Whole-slide mitosis detection in H&E breast histology using PHH3 as a reference to train distilled stain-invariant convolutional networks. IEEE Trans. Med. Imaging 37(9), 2126–2136 (2018). https://doi.org/10.1109/TMI.2018.2820199

    Article  Google Scholar 

  52. Tuominen, V.J., Isola, J.: Linking whole-slide microscope images with DICOM by using JPEG2000 interactive protocol. J. Digit. Imaging 23(4), 454–462 (2010). https://doi.org/10.1007/s10278-009-9200-1

    Article  Google Scholar 

  53. Tuominen, V.J., Ruotoistenmäki, S., Viitanen, A., Jumppanen, M., Isola, J.: Immunoratio: a publicly available web application for quantitative image analysis of estrogen receptor (ER), progesterone receptor (PR), and Ki-67. Breast Cancer Res. 12(4), 1–12 (2010). https://doi.org/10.1186/bcr2615

    Article  Google Scholar 

  54. Turing, A.M.: Computing machinery and intelligence. Mind 59(236), 433–460 (1950). https://doi.org/10.1093/mind/LIX.236.433

    Article  MathSciNet  Google Scholar 

  55. William, W., Ware, A., Basaza-Ejiri, A.H., Obungoloch, J.: A review of image analysis and machine learning techniques for automated cervical cancer screening from pap-smear images. Comput. Methods Programs Biomed. 164, 15–22 (2018). https://doi.org/10.1016/j.cmpb.2018.05.034

    Article  Google Scholar 

  56. Yan, H., Jiang, Y., Zheng, J., Peng, C., Li, Q.: A multilayer perceptron-based medical decision support system for heart disease diagnosis. Expert Syst. Appl. 30(2), 272–281 (2006). https://doi.org/10.1016/j.eswa.2005.07.022

    Article  Google Scholar 

  57. Yang, Q., et al.: Epithelium segmentation and automated gleason grading of prostate cancer via deep learning in label-free multiphoton microscopic images. J. Biophotonics 13(2), e201900203 (2019). https://doi.org/10.1002/jbio.201900203

    Article  MathSciNet  Google Scholar 

  58. Zhang, L., Lu, L., Nogues, I., Summers, R.M., Liu, S., Yao, J.: Deeppap: deep convolutional networks for cervical cell classification. IEEE J. Biomed. Health Inf. 21(6), 1633–1643 (2017). https://doi.org/10.1109/JBHI.2017.2705583

    Article  Google Scholar 

  59. Zwoenitzer, R., Kalinski, T., Hofmann, H., Roessner, A., Bernarding, J.: Digital pathology: DICOM-conform draft, testbed, and first results. Comput. Methods Programs Biomed. 87(3), 181–188 (2007). https://doi.org/10.1016/j.cmpb.2007.05.010

    Article  Google Scholar 

Download references

Acknowledgements

The authors declare that there are no conflicts of interests and the work does not raise any ethical issues. Parts of this work has been funded by the Austrian Science Fund (FWF), Project: P-32554 “A reference model of explainable Artificial Intelligence for the Medical Domain”, and by the European Union’s Horizon 2020 research and innovation program under grant agreements No 824087 “EOSC-Life” and No 826078 “Feature Cloud”. We thank the anonymous reviewers for their critical but helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Regitnig .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Regitnig, P., Müller, H., Holzinger, A. (2020). Expectations of Artificial Intelligence for Pathology. In: Holzinger, A., Goebel, R., Mengel, M., Müller, H. (eds) Artificial Intelligence and Machine Learning for Digital Pathology. Lecture Notes in Computer Science(), vol 12090. Springer, Cham. https://doi.org/10.1007/978-3-030-50402-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50402-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50401-4

  • Online ISBN: 978-3-030-50402-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics