Skip to main content

Deep Learning for Partial Fingerprint Inpainting and Recognition

  • Conference paper
  • First Online:
Image Analysis and Recognition (ICIAR 2020)

Abstract

Image completion and inpainting has been widely studied by the computer vision research community. With the recent growth and availability of computation power, we are now able to perform more complex inpainting than ever before. Techniques based on both learning and non-learning methods have been proposed for image inpainting. Some of these approaches have been used for fingerprint image enhancement. However, we lack techniques for fingerprint completion using deep learning. This is especially the case for techniques with the goal of augmenting the number of correct minutiae matchpoints for fingerprint recognition. This paper proposes new deep architectures to improve the accuracy of prints matching in live scan images. The proposed techniques have been tested using a professional software for fingerprint matching to evaluate the performance of deep learning in that aspect. The obtained results are promising and show an increase of 36.94% in minutiae match points identification.

This work was supported in part by the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2018-06233].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anand, V., Kanhangad, V.: Pore detection in high-resolution fingerprint images using deep residual network. J. Electron. Imaging 28(2), 020502 (2019)

    Article  Google Scholar 

  2. Anand, V., Kanhangad, V.: PoreNet: CNN-based pore descriptor for high-resolution fingerprint recognition. arXiv:1905.06981 [cs], May 2019

  3. Aravindan, A., Anzar, S.M.: Robust partial fingerprint recognition using wavelet SIFT descriptors. Pattern Anal. Appl. 20(4), 963–979 (2017). https://doi.org/10.1007/s10044-017-0615-x

    Article  MathSciNet  Google Scholar 

  4. Bertalmio, M., Sapiro, G., Caselles, V., Ballester, C.: Image inpainting. In: Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 2000, pp. 417–424. ACM Press/Addison-Wesley Publishing Co., New York (2000)

    Google Scholar 

  5. Castillo-Rosado, K., Hernández-Palancar, J.: Latent fingerprint matching using distinctive ridge points. Informatica 30(3), 431–454 (2019)

    Article  MathSciNet  Google Scholar 

  6. Chalearn LAP Inpainting Competition: Track 3. Denoising and inpainting for fingerprint verification. https://competitions.codalab.org/competitions/18426#learn_the_details. Accessed Jan 2020

  7. Champod, C., Chamberlain, P.: Fingerprints, Chap. 3. Routledge (2009)

    Google Scholar 

  8. CSIpix: CSIpix matcher (2019). https://www.csipix.com/. Accessed Jan 2020

  9. Durose, M.R., Burch, A.M., Walsh, K., Tiry, E., Bureau of Justice Statistics (BJS), US Dept of Justice, Office of Justice Programs, United States of America: Publicly funded forensic crime laboratories: resources and services, 2014. Impressions 50(44), 40 (2016)

    Google Scholar 

  10. Farelo, A.: Fingerprints survey 2011. In: 7th International Symposium on Fingerprints (2011)

    Google Scholar 

  11. Galton, F., Galton, S.F.: Finger Prints. Macmillan and Company, London (1892)

    Google Scholar 

  12. Haritsa, J., Ansar, A.H., Wadhwani, K., Jadhav, S.: Anguli: synthetic fingerprint generator. https://dsl.cds.iisc.ac.in/projects/Anguli/. Accessed Jan 2020

  13. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2016

    Google Scholar 

  14. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Conference Track Proceedings of 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015 (2015)

    Google Scholar 

  15. Kücken, M., Newell, A.C.: Fingerprint formation. J. Theor. Biol. 235(1), 71–83 (2005)

    Article  MathSciNet  Google Scholar 

  16. Lee, W., Cho, S., Choi, H., Kim, J.: Partial fingerprint matching using minutiae and ridge shape features for small fingerprint scanners. Expert Syst. Appl. 87, 183–198 (2017)

    Article  Google Scholar 

  17. Liu, G., Reda, F.A., Shih, K.J., Wang, T.C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: The European Conference on Computer Vision (ECCV), September 2018

    Google Scholar 

  18. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)

    Article  Google Scholar 

  19. Mansar, Y.: Deep end-to-end fingerprint denoising and inpainting. arXiv:1807.11888 [cs], July 2018

  20. Mao, X.J., Shen, C., Yang, Y.B.: Image restoration using convolutional auto-encoders with symmetric skip connections. arXiv:1606.08921 [cs], June 2016

  21. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  22. Schroff, F., Kalenichenko, D., Philbin, J.: FaceNet: a unified embedding for face recognition and clustering. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2015

    Google Scholar 

  23. Shehu, Y.I., Ruiz-Garcia, A., Palade, V., James, A.: Sokoto coventry fingerprint dataset. arXiv:1807.10609 [cs], July 2018

  24. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv:1409.1556 [cs], September 2014

  25. Tewari, R.K., Ravikumar, K.V.: History and development of forensic science in India. J. Postgrad. Med. 46(4), 303 (2000)

    Google Scholar 

  26. Ulery, B.T., Hicklin, R.A., Roberts, M.A., Buscaglia, J.: Measuring what latent fingerprint examiners consider sufficient information for individualization determinations. PLoS One 9(11), p1–16, 16 p. (2014)

    Google Scholar 

  27. Wieclaw, L.: A minutiae-based matching algorithms in fingerprint recognition systems. J. Med. Inform. Technol. 13, 65–71 (2009)

    Google Scholar 

  28. Zhang, F., Feng, J.: High-resolution mobile fingerprint matching via deep joint KNN-triplet embedding. In: Thirty-First AAAI Conference on Artificial Intelligence (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay A. Akhloufi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Blais, MA., Couturier, A., Akhloufi, M.A. (2020). Deep Learning for Partial Fingerprint Inpainting and Recognition. In: Campilho, A., Karray, F., Wang, Z. (eds) Image Analysis and Recognition. ICIAR 2020. Lecture Notes in Computer Science(), vol 12131. Springer, Cham. https://doi.org/10.1007/978-3-030-50347-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-50347-5_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-50346-8

  • Online ISBN: 978-3-030-50347-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics