Skip to main content

Method for Synthesis of Intelligent Controls Based on Fuzzy Logic and Analysis of Behavior of Dynamic Measures on Switching Hypersurface

  • Conference paper
  • First Online:
Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19) (IITI 2019)

Abstract

The region of phase space with fuzzy boundaries is considered. The dynamics of the controlled system in this area is defined by a TS-model of the MISO type with a rule base up to the functions of each of the conclusions of the production rules. In contrast to the known solutions, this paper proposes to use controls synthesized based on the maximum condition of the generalized power function as the functions in each conclusion of the production rules. In this case to provide the various operation modes we need to build the corresponding set of switching hypersurfaces, which form is determined by the synthesizing function. To build the function we perform the analysis of dynamic measures on the switching hypersurface in the phase space. This function together with the use of fuzzy logic allows to develop a method for the synthesis of intelligent controls. The constructiveness of the developed method is confirmed by the results of the analysis of the solutions to the problem to control a nonlinear unstable object, obtained using the mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hung, L.C., Chung, H.Y.: Decoupled sliding-mode with fuzzy-neural network controller for nonlinear systems. Int. J. Approximate Reasoning 46, 74–96 (2007)

    Article  MathSciNet  Google Scholar 

  2. Vasiliev, S.N., Kudinov, Yu.I, Pashchenko, F.F., Durgaryan, I.S., Kelina, A.Yu., Kudinov, I.Yu., Pashchenko, A.F.: Intelligent control systems and fuzzy regulators. Part II. Learning fuzzy regulators, fuzzy PID regulators. Sens. Syst. 3(211), 3–12 (2017)

    Google Scholar 

  3. Kostoglotov, A.A., Lazarenko, S.V., Lyaschenko, Z.V.: Intellectualization of measuring systems based on the method of structural adaptation in the construction of tracking filter. In: Proceedings of 2017 20th IEEE International Conference on Soft Computing and Measurements (SCM 2017), pp. 568–570 (2017)

    Google Scholar 

  4. Kostoglotov, A.A., Kostoglotov, A.I., Lazarenko, S.V.: Joint maximum principle in the problem of synthesizing an optimal control of nonlinear systems. Autom. Control Comput. Sci. 41(5), 274–281 (2007)

    Article  Google Scholar 

  5. Kostoglotov, A., Lazarenko, S., Agapov, A., Lyaschenko, Z., Pavlova, I.: Designing the knowledge base for the intelligent inertial regulator based on quasi-optimal synthesis of controls using the combined maximum principle. Adv. Intell. Syst. Comput. 874, 190–200 (2019)

    Google Scholar 

  6. Kostoglotov A., Lazarenko S., Penkov A., Kirillov I., Manaenkova O.: Synthesis of adaptive algorithms for estimating the parameters of angular position based on the combined maximum principle. In: Proceedings of the Third International Scientific Conference “Intelligent Information Technologies for Industry” (IITI 2018). Advances in Intelligent Systems and Computing, vol 874. Springer, Cham (2019)

    Google Scholar 

  7. Deryabkin, I.V., Kostoglotov, A.A., Lazarenko, S.V., Lyaschenko, Z.V., Manaenkova, O.N.: The synthesis of adaptive multi-mode regulators based on combined control of the combined maximum principle. Bull. Rostov State Transp. Univ. 3(63), 124–132 (2016)

    Google Scholar 

  8. Kostoglotov, A., Lazarenko, S., Pugachev, I., Yachmenov, A.: Synthesis of intelligent discrete algorithms for estimation with model adaptation based on the combined maximum principle. Adv. Intell. Syst. Comput. 874, 116–124 (2019)

    Google Scholar 

  9. Agapov, A.A., Kostoglotov, A.A., Lazarenko, S.V., Lyaschenko, Z.V., Lyaschenko, A.M.: Analysis and synthesis of non-linear multi-mode control laws using the combined maximum principle. Bull. Rostov State Transp. Univ. 1(73), 119–125 (2019)

    Google Scholar 

  10. Pegat, A.: Fuzzy modeling and control. Moscow: BINOM. Laboratory of Knowledge, pp. 798 (2013)

    Google Scholar 

  11. Lur’e, A.I.: Analytical mechanics Moscow: GIFML, pp. 824 (1961)

    Google Scholar 

  12. Markeev, A.P.: Theoretical Mechanics, p. 416. Nauka, Moscow (1990)

    Google Scholar 

  13. Muzichenko, N.Y.: Synthesis of optimal linear meter in observations through correlated noise based on fuzzy logic algorithms. Radio Eng. Electr. 6, 1–4 (2014)

    Google Scholar 

  14. Anan’evskij, I.M., Reshmin, S.A.: Continuous control of mechanical system based on the method of decomposition. Izvestiya RAN. Theory Control Syst. 4, 3–17 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Andrey A. Kostoglotov , Alexander A. Agapov or Sergey V. Lazarenko .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kostoglotov, A.A., Agapov, A.A., Lazarenko, S.V. (2020). Method for Synthesis of Intelligent Controls Based on Fuzzy Logic and Analysis of Behavior of Dynamic Measures on Switching Hypersurface. In: Kovalev, S., Tarassov, V., Snasel, V., Sukhanov, A. (eds) Proceedings of the Fourth International Scientific Conference “Intelligent Information Technologies for Industry” (IITI’19). IITI 2019. Advances in Intelligent Systems and Computing, vol 1156. Springer, Cham. https://doi.org/10.1007/978-3-030-50097-9_54

Download citation

Publish with us

Policies and ethics