Skip to main content

D.C. Constrained Optimization Approach for Solving Metal Recovery Processing Problem

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Abstract

This paper was motivated by an industrial optimization problem arisen at the Erdenet Mining Corporation (Mongolia). The problem involved real industrial data turned out to be a quadratically constrained quadratic programming problem, which we solve by applying the global search theory for general DC programming. According to the theory, first, we obtain an explicit DC representation of the nonconvex functions involved in the problem. Second, we perform a local search that takes into account the structure of the problem in question. Further, we construct procedures for escaping critical points provided by the local search method. In particular, we propose a new way of constructing an approximation of the level set based on conjugated vectors. The computational simulation demonstrates that the proposed method is a quite flexible tool which can fast provide operations staff with good solutions to achieve the best performance according to specific requirements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/.

References

  1. Barrients, O., Correa, R.: An algorithm for global minimizatoion of linearly constrained quadratic functions. J. Global Optim. 16, 77–93 (2000). https://doi.org/10.1023/A:1008306625093

    Article  MathSciNet  Google Scholar 

  2. Boer, E.P.J., Hendrih, E.M.T.: Global optimization problems in optimal design of experiments in regression models. J. Global Optim. 18, 385–398 (2000). https://doi.org/10.1023/A:1026552318150

    Article  MathSciNet  Google Scholar 

  3. Bomze, I., Danninger, G.: A finite algorithm for solving general quadratic problem. J. Global Optim. 4(1), 1–16 (1994). https://doi.org/10.1007/BF01096531

    Article  MathSciNet  MATH  Google Scholar 

  4. Bonnans, J.-F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer-Verlag, Heidelberg (2006). https://doi.org/10.1007/978-3-540-35447-5

    Book  MATH  Google Scholar 

  5. Enkhbat, R., Gruzdeva, T.V., Barkova, M.V.: D.C. programming approach for solving an applied ore-processing problem. J. Ind. Manag. Optim. 14(2), 613–623 (2018)

    MathSciNet  MATH  Google Scholar 

  6. Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New-York (1972)

    Google Scholar 

  7. Gruzdeva, T.V., Strekalovsky, A.S.: Local Search in Problems with Nonconvex Constraints. Comput. Math. Math. Phys. 47, 381–396 (2007). https://doi.org/10.1134/S0965542507030049

    Article  MathSciNet  MATH  Google Scholar 

  8. Gruzdeva, T., Strekalovsky, A.: An approach to fractional programming via D.C. constraints problem: local search. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 404–417. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_32

    Chapter  Google Scholar 

  9. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Heidelberg (1993). https://doi.org/10.1007/978-3-662-02796-7

    Book  MATH  Google Scholar 

  10. Horst, R., Pardalos, P., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)

    MATH  Google Scholar 

  11. Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic, Dordrecht (1995)

    Book  Google Scholar 

  12. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/978-0-387-40065-5

    Book  MATH  Google Scholar 

  13. Pardalos, P.M., Rosen, J.B. (eds.): Constrained Global Optimization: Algorithms and Applications. LNCS, vol. 268. Springer, Heidelberg (1987). https://doi.org/10.1007/BFb0000035

    Book  MATH  Google Scholar 

  14. Pardalos, P.M., Schnitger, J.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7, 33–35 (1988)

    Article  MathSciNet  Google Scholar 

  15. Strekalovsky, A.S.: On the merit and penalty functions for the D.C. Optimization. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 452–466. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44914-2_36

    Chapter  MATH  Google Scholar 

  16. Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465–502. Springer, New York (2014). https://doi.org/10.1007/978-1-4939-0808-0_23

    Chapter  MATH  Google Scholar 

  18. Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003). (in Russian)

    Google Scholar 

  19. Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. 13(3), 597–615 (2019). https://doi.org/10.1007/s11590-017-1214-x

    Article  MathSciNet  MATH  Google Scholar 

  20. Strekalovsky, A.S., Yakovleva, T.V.: On a local and global search involved in nonconvex optimization problems. Autom. Remote Control. 65, 375–387 (2004). https://doi.org/10.1023/B:AURC.0000019368.45522.7a

    Article  MathSciNet  MATH  Google Scholar 

  21. Tao, P.D., Le Thi, H.A.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005). https://doi.org/10.1007/s10479-004-5022-1

    Article  MathSciNet  MATH  Google Scholar 

  22. Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)

    Article  MathSciNet  Google Scholar 

  23. Yajima, Y., Fujie, T.A.: Polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998). https://doi.org/10.1023/A:1008293029350

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work supported by the project “ P2019-3751” of National University of Mongolia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tatiana V. Gruzdeva .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Enkhbat, R., Gruzdeva, T.V., Enkhbayr, J. (2020). D.C. Constrained Optimization Approach for Solving Metal Recovery Processing Problem. In: Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science(), vol 12095. Springer, Cham. https://doi.org/10.1007/978-3-030-49988-4_7

Download citation

Publish with us

Policies and ethics