D.C. Constrained Optimization Approach for Solving Metal Recovery Processing Problem

  • Rentsen Enkhbat
  • Tatiana V. GruzdevaEmail author
  • Jamsranjav Enkhbayr
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)


This paper was motivated by an industrial optimization problem arisen at the Erdenet Mining Corporation (Mongolia). The problem involved real industrial data turned out to be a quadratically constrained quadratic programming problem, which we solve by applying the global search theory for general DC programming. According to the theory, first, we obtain an explicit DC representation of the nonconvex functions involved in the problem. Second, we perform a local search that takes into account the structure of the problem in question. Further, we construct procedures for escaping critical points provided by the local search method. In particular, we propose a new way of constructing an approximation of the level set based on conjugated vectors. The computational simulation demonstrates that the proposed method is a quite flexible tool which can fast provide operations staff with good solutions to achieve the best performance according to specific requirements.


DC programming Quadratic programming Inequality constraints Manufacturing processes Linearized problem Local search Global search 



This work supported by the project “ P2019-3751” of National University of Mongolia.


  1. 1.
    Barrients, O., Correa, R.: An algorithm for global minimizatoion of linearly constrained quadratic functions. J. Global Optim. 16, 77–93 (2000). Scholar
  2. 2.
    Boer, E.P.J., Hendrih, E.M.T.: Global optimization problems in optimal design of experiments in regression models. J. Global Optim. 18, 385–398 (2000). Scholar
  3. 3.
    Bomze, I., Danninger, G.: A finite algorithm for solving general quadratic problem. J. Global Optim. 4(1), 1–16 (1994). Scholar
  4. 4.
    Bonnans, J.-F., Gilbert, J.C., Lemaréchal, C., Sagastizábal, C.A.: Numerical Optimization: Theoretical and Practical Aspects, 2nd edn. Springer-Verlag, Heidelberg (2006). Scholar
  5. 5.
    Enkhbat, R., Gruzdeva, T.V., Barkova, M.V.: D.C. programming approach for solving an applied ore-processing problem. J. Ind. Manag. Optim. 14(2), 613–623 (2018)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Fedorov, V.V.: Theory of Optimal Experiments. Academic Press, New-York (1972)Google Scholar
  7. 7.
    Gruzdeva, T.V., Strekalovsky, A.S.: Local Search in Problems with Nonconvex Constraints. Comput. Math. Math. Phys. 47, 381–396 (2007). Scholar
  8. 8.
    Gruzdeva, T., Strekalovsky, A.: An approach to fractional programming via D.C. constraints problem: local search. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 404–417. Springer, Cham (2016). Scholar
  9. 9.
    Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms. Springer-Verlag, Heidelberg (1993). Scholar
  10. 10.
    Horst, R., Pardalos, P., Thoai, N.V.: Introduction to Global Optimization. Kluwer Academic Publishers, Dordrecht (1995)zbMATHGoogle Scholar
  11. 11.
    Horst, R., Pardalos, P.M.: Handbook of Global Optimization. Kluwer Academic, Dordrecht (1995)CrossRefGoogle Scholar
  12. 12.
    Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). Scholar
  13. 13.
    Pardalos, P.M., Rosen, J.B. (eds.): Constrained Global Optimization: Algorithms and Applications. LNCS, vol. 268. Springer, Heidelberg (1987). Scholar
  14. 14.
    Pardalos, P.M., Schnitger, J.: Checking local optimality in constrained quadratic programming is NP-hard. Oper. Res. Lett. 7, 33–35 (1988)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Strekalovsky, A.S.: On the merit and penalty functions for the D.C. Optimization. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 452–466. Springer, Cham (2016). Scholar
  16. 16.
    Strekalovsky, A.S.: On local search in d.c. optimization problems. Appl. Math. Comput. 255, 73–83 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Strekalovsky, A.S.: On solving optimization problems with hidden nonconvex structures. In: Rassias, T.M., Floudas, C.A., Butenko, S. (eds.) Optimization in Science and Engineering, pp. 465–502. Springer, New York (2014). Scholar
  18. 18.
    Strekalovsky, A.S.: Elements of Nonconvex Optimization. Nauka, Novosibirsk (2003). (in Russian)Google Scholar
  19. 19.
    Strekalovsky, A.S.: Global optimality conditions and exact penalization. Optim. Lett. 13(3), 597–615 (2019). Scholar
  20. 20.
    Strekalovsky, A.S., Yakovleva, T.V.: On a local and global search involved in nonconvex optimization problems. Autom. Remote Control. 65, 375–387 (2004). Scholar
  21. 21.
    Tao, P.D., Le Thi, H.A.: The DC (difference of convex functions) programming and DCA revisited with DC models of real world nonconvex optimization problems. Ann. Oper. Res. 133, 23–46 (2005). Scholar
  22. 22.
    Toland, J.F.: Duality in nonconvex optimization. J. Math. Anal. Appl. 66(2), 399–415 (1978)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Yajima, Y., Fujie, T.A.: Polyhedral approach for nonconvex quadratic programming problems with box constraints. J. Global Optim. 13, 151–170 (1998). Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Institute of Mathematics and Digital Technology, Mongolian Academy of SciencesUlaanbaatarMongolia
  2. 2.Matrosov Institute for System Dynamics and Control Theory of SB of RASIrkutskRussia
  3. 3.National University of MongoliaUlaanbaatarMongolia

Personalised recommendations