Advertisement

Using Integer Programming to Search for Counterexamples: A Case Study

  • Giuseppe LanciaEmail author
  • Eleonora Pippia
  • Franca Rinaldi
Conference paper
  • 205 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

It is known that there exist 4-regular, 1-tough graphs which are non-hamiltonian. The smallest such graph known has \(n=18\) nodes and was found by Bauer et al., who conjectured that all 4-regular, 1-tough graphs with \(n\le 17\) are hamiltonian. They in fact proved that this is true for \(n\le 15\), but left open the possibility of non-hamiltonian graphs of 16 or 17 nodes. By using ILP for modeling a counterexample, and then finding out that the model has no solutions, we give an algorithmic proof that their conjecture was indeed correct.

Notes

Funding Information

This research has been carried out in the framework of the departmental research project ICON: Innovative Combinatorial Optimization in Networks, Department of Mathematics, Computer Science and Physics (PRID 2017–2018), University of Udine, Italy.

References

  1. 1.
    Appel, K., Haken, W.: Every planar map is four colorable. I. Discharging. Illinois J. Math. 21(3), 429–490 (1977)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Bauer, D., Hakimi, S.L., Schmeichel, E.: Recognizing tough graphs is NP-hard. Discrete Appl. Math 28, 191–195 (1990)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bauer, D., Broersma, H.J., Schmeichel, E.: Toughness in graphs - a survey. Graphs Comb. 22, 1–35 (2006)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Bauer, D., Broersma, H.J., Veldman, H.J.: On smallest nonhamiltonian regular tough graphs. Congressus Numerantium 70, 95–98 (1990)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Bauer, D., Broersma, H.J., Veldman, H.J.: Not every 2-tough graph is hamiltonian. Discrete Appl. Math 99, 317–321 (2000)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Broersma, H.J.: How tough is toughness? Bull. Eur. Assoc. Theoret. Comput. Sci. 117, 28–52 (2015)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Chvátal, V.: Tough graphs and hamiltonian circuits. Discrete Math. 5, 215–228 (1973)MathSciNetCrossRefGoogle Scholar
  8. 8.
    DeLeon, M.: A study of sufficient conditions for hamiltonian cycles. Rose-Hulman Und. Math. J. 1(1), 1–19 (2000) Google Scholar
  9. 9.
    Desrosiers, J., Lübbecke, M.E.: Branch-Price-and-Cut Algorithms, in the Wiley Encyclopedia of Operations Research and Management Science. Wiley, Chichester (2010)Google Scholar
  10. 10.
    Gamrath, G., et al.: The SCIP Optimization Suite 3.2.1, ZIB-Report, pp. 15–60 (2016)Google Scholar
  11. 11.
    Hilbig, F.: Kantenstrukturen in nichthamiltonschen Graphen. Ph.D. thesis, Technische Universït at Berlin (1986)Google Scholar
  12. 12.
    Hoffman, A.J., Singleton, R.R.: On Moore graphs of diameter two and three. IBM J. Res. Dev. 4, 497–504 (1960)CrossRefGoogle Scholar
  13. 13.
    Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-540-68279-0_17CrossRefzbMATHGoogle Scholar
  14. 14.
    McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symbolic Comput. 60, 94–112 (2014)MathSciNetCrossRefGoogle Scholar
  15. 15.
    McKay, B.D., Piperno, A.: nauty and Traces User’s Guide (Version 2.6) (2016)Google Scholar
  16. 16.
    Mitchell, J.E.: Branch-and-cut algorithms for combinatorial optimization problems. In: Pardalos, P.M., Resende, M.G.C. (eds.) Handbook of Applied Optimization, pp. 65–77. Oxford University Press, Oxford (2002)Google Scholar
  17. 17.
    Ostrowski, J., Linderoth, J., Rossi, F., Smriglio, S.: Orbital branching. Math. Program. 126(1), 147–178 (2011)MathSciNetCrossRefGoogle Scholar
  18. 18.
    Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed integer programs (2015). http://www.optimization-online.org
  19. 19.
    Skiena, S.S.: The Algorithm Design Manual. Springer, London (2008).  https://doi.org/10.1007/978-1-84800-070-4CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  • Giuseppe Lancia
    • 1
    Email author
  • Eleonora Pippia
    • 1
    • 2
  • Franca Rinaldi
    • 1
  1. 1.Dipartimento di Scienze Matematiche, Informatiche e FisicheUniversity of UdineUdineItaly
  2. 2.The Research Hub by Electrolux ProfessionalPordenoneItaly

Personalised recommendations