Advertisement

Integer Programming Approach to the Data Traffic Paths Recovering Problem

  • Igor VasilyevEmail author
  • Dong Zhang
  • Jie Ren
Conference paper
  • 198 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

In this paper, we propose a novel approach to recovering path relationships in communication networks. The path relationship is one of the key input data which is necessary for network operation and maintenance. We have a continuous network transformation, upgrades, expansions, service allocations, thus the network physical topology and paths relationship are permanently changing with high frequency. Our approach is aimed at recovering the path relationships through flow information of each arc in the network. Getting the flow information is not a big technical problem and its control is included in the basic toolbox for network monitoring. We consider two scenarios which lead us to integer linear programs. The both of them minimize the flow deviation, where in the first one we look for a directed spanning tree (r-arborescence) and, in the second one—more general origin/destination paths (OD-paths). We propose mixed integer linear programming formulations for both problems. Their feature is that they contain the non-polynomial number of constraints which are considered implicitly by the cutting planes approach. The preliminary computation results showed that the large-scale instances of the first scenario can easily be solved. At the same time, the optimal solutions of second scenario problems can be found only on small- and medium-size instances, which inspires for the further research.

Keywords

Communication network Data flow Mixed integer linear programming Branch-and-cut algorithm 

References

  1. 1.
    Abadi, A., Rajabioun, T., Ioannou, P.A.: Traffic flow prediction for road transportation networks with limited traffic data. IEEE Trans. Intell. Transp. Syst. 16(2), 653–662 (2015).  https://doi.org/10.1109/TITS.2014.2337238CrossRefGoogle Scholar
  2. 2.
    Akyildiz, I.F., Lee, A., Wang, P., Luo, M., Chou, W.: A roadmap for traffic engineering in SDN-openflow networks. Comput. Netw. 71, 1–30 (2014).  https://doi.org/10.1016/j.comnet.2014.06.002CrossRefGoogle Scholar
  3. 3.
    Altın, A., Yaman, H., Pınar, M.C.: The robust network loading problem under hose demand uncertainty: formulation, polyhedral analysis, and computations. INFORMS J. Comput. 23(1), 75–89 (2011).  https://doi.org/10.1287/ijoc.1100.0380MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Applegate, D.L., Bixby, R.E., Chvatál, V., Cook, W.J.: The Traveling Salesman Problem: A Computational Study. Princeton University Press, Princeton (2006). http://www.jstor.org/stable/j.ctt7s8xg
  5. 5.
    Avella, P., Boccia, M., Sforza, A., Vasil’ev, I.: A branch-and-cut algorithm for the median-path problem. Comput. Optim. Appl. 32(3), 215–230 (2005).  https://doi.org/10.1007/s10589-005-4800-2MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Avella, P., Mattia, S., Sassano, A.: Metric inequalities and the network loading problem. Discrete Optim. 4(1), 103–114 (2007).  https://doi.org/10.1016/j.disopt.2006.10.002. Mixed Integer ProgrammingMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Beasley, J.E.: An algorithm for the steiner problem in graphs. Networks 14(1), 147–159 (1984).  https://doi.org/10.1002/net.3230140112MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Benhamiche, A., Mahjoub, A.R., Perrot, N., Uchoa, E.: Unsplittable non-additive capacitated network design using set functions polyhedra. Comput. Oper. Res. 66, 105–115 (2016).  https://doi.org/10.1016/j.cor.2015.08.009MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bharath-Kumar, K., Jaffe, J.: Routing to multiple destinations in computer networks. IEEE Trans. Commun. 31(3), 343–351 (1983).  https://doi.org/10.1109/TCOM.1983.1095818CrossRefzbMATHGoogle Scholar
  10. 10.
    Cheng, X., Li, Y., Du, D.Z., Ngo, H.Q.: Steiner trees in industry. In: Du, D.Z., Pardalos, P.M. (eds.) Handbook of Combinatorial Optimization, pp. 193–216. Springer, Boston (2005).  https://doi.org/10.1007/0-387-23830-1_4
  11. 11.
    Dreyfus, S.E., Wagner, R.A.: The steiner problem in graphs. Networks 1(3), 195–207 (1971).  https://doi.org/10.1002/net.3230010302MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Goemans, M.X., Myung, Y.S.: A catalog of steiner tree formulations. Networks 23(1), 19–28 (1993).  https://doi.org/10.1002/net.3230230104MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Hakimi, S.L.: Steiner’s problem in graphs and its implications. Networks 1(2), 113–133 (1971).  https://doi.org/10.1002/net.3230010203MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Karbassi, A., Barth, M.: Vehicle route prediction and time of arrival estimation techniques for improved transportation system management. In: IEEE IV2003 Intelligent Vehicles Symposium, Proceedings (Cat. No. 03TH8683), pp. 511–516, June 2003.  https://doi.org/10.1109/IVS.2003.1212964
  15. 15.
    Könemann, J., Pritchard, D., Tan, K.: A partition-based relaxation for steiner trees. Math. Program. 127(2), 345–370 (2011).  https://doi.org/10.1007/s10107-009-0289-2MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Novak, R., Kandus, G.: Adaptive steiner tree balancing in distributed algorithm for multicast connection setup. Microprocess. Microprogr. 40(10), 795–798 (1994).  https://doi.org/10.1016/0165-6074(94)90042-6CrossRefGoogle Scholar
  17. 17.
    Novak, R., Rugelj, J., Kandus, G.: Steiner Tree Based Distributed Multicast Routing in Networks, pp. 327–351. Springer, Boston (2001).  https://doi.org/10.1007/978-1-4613-0255-1_10
  18. 18.
    Oliveira, C.A., Pardalos, P.M.: Mathematical Aspects of Network Routing Optimization. SOIA, vol. 53. Springer, New York (2011).  https://doi.org/10.1007/978-1-4614-0311-1CrossRefzbMATHGoogle Scholar
  19. 19.
    Polzin, T., Daneshmand, S.V.: On steiner trees and minimum spanning trees in hypergraphs. Oper. Res. Lett. 31(1), 12–20 (2003).  https://doi.org/10.1016/S0167-6377(02)00185-2MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Rathore, P., Kumar, D., Rajasegarar, S., Palaniswami, M., Bezdek, J.C.: A scalable framework for trajectory prediction (2018). https://arxiv.org/abs/1806.03582v3
  21. 21.
    Resende, M., Pardalos, P.: Handbook of Optimization in Telecommunications. Springer, Heidelberg (2008).  https://doi.org/10.1007/978-0-387-30165-5
  22. 22.
    Siebert, M., Ahmed, S., Nemhauser, G.: A linear programming based approach to the steiner tree problem with a fixed number of terminals. Networks 75(2), 124–136 (2020).  https://doi.org/10.1002/net.21913CrossRefGoogle Scholar
  23. 23.
    Voß, S.: Steiner tree problems in telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 459–492. Springer, Boston (2006).  https://doi.org/10.1007/978-0-387-30165-5_18

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Matrosov Institute for System Dynamics and Control Theory of Siberian Branch of Russian Academy of SciencesIrkutskRussia
  2. 2.Algorithm and Technology Development Department, Global Technical Service DepartmentHuawei Technologies, Co., Ltd.DongguanChina
  3. 3.Moscow Advanced Software Technology LabHuawei Russian Research InstituteMoscowRussia

Personalised recommendations