Skip to main content

On Symmetry Groups of Some Quadratic Programming Problems

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Abstract

Solution and analysis of mathematical programming problems may be simplified when these problems are symmetric under appropriate linear transformations. In particular, a knowledge of the symmetries may help reduce the problem dimension, cut the search space by linear cuts or obtain new local optima from the ones previously found. While the previous studies of symmetries in the mathematical programming usually dealt with permutations of coordinates of the solutions space, the present paper considers a larger group of invertible linear transformations. We study a special case of the quadratic programming problem, where the objective function and constraints are given by quadratic forms, and the sum of all matrices of quadratic forms, involved in the constraints, is a positive definite matrix. In this setting, it is sufficient to consider only orthogonal transformations of the solution space. In this group of orthogonal transformations, we describe the structure of the subgroup which gives the symmetries of the problem. Besides that, a method for finding such symmetries is outlined, and illustrated in two simple examples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For abstract groups, such a unique connection exists only in the case of simply connected groups; otherwise, an abstract exponent cannot be uniquely determined. But in our case of a matrix group, the matrix exponent is uniquely determined.

  2. 2.

    This is because \( Q_{33} \) is \(-1\), rather than 1 as in the continuous subgroup.

References

  1. Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer programs. Math. Program. 137, 65–90 (2013)

    Article  MathSciNet  Google Scholar 

  2. Chervyakov, O.: Affine symmetries of the polyhedron of independence system with uhit shift. Discretnyi Analiz i Issledovanie Operacii 2(2), 82–96 (1999). (in Russian)

    MathSciNet  MATH  Google Scholar 

  3. Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on spatial branch-and-bound for circle packing in a square. Discrete Appl. Math. 161(1), 96–106 (2013)

    Article  MathSciNet  Google Scholar 

  4. Eremeev, A.V., Tyunin, N.N., Yurkov, A.S.: Non-convex quadratic programming problems in short wave antenna array optimization. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 34–45. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_3

    Chapter  MATH  Google Scholar 

  5. Garnier, J., Kallel, L.: How to Detect All Maxima of a Function, pp. 343–370. Springer, Heidelberg (2001). https://doi.org/10.1007/978-3-662-04448-3_17

    Book  MATH  Google Scholar 

  6. Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1), 95–128 (2004). https://doi.org/10.1016/j.jpaa.2003.12.011

    Article  MathSciNet  MATH  Google Scholar 

  7. Kolokolov, A.A., Orlovskaya, T.G., Rybalka, M.F.: Analysis of integer programming algorithms with l-partition and unimodular transformations. Autom. Remote Control 73(2), 369–380 (2012)

    Article  MathSciNet  Google Scholar 

  8. Kouyialis, G., Wang, X., Misener, R.: Symmetry detection for quadratic optimization using binary layered graphs. Processes 7(11) (2019). https://doi.org/10.3390/pr7110838

  9. Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, Cambridge (1985)

    MATH  Google Scholar 

  10. Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131 (2010). https://doi.org/10.1007/s10107-010-0351-0

  11. Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-540-68279-0_17

    Chapter  MATH  Google Scholar 

  12. Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed integer programs. Math. Program. Comput. 11(1), 37–93 (2018). https://doi.org/10.1007/s12532-018-0140-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Prugel-Bennett, A.: Symmetry breaking in population-based optimization. Trans. Evol. Comp 8(1), 63–79 (2004). https://doi.org/10.1109/TEVC.2003.819419

    Article  MathSciNet  Google Scholar 

  14. Reeves, C., Eremeev, A.: Statistical analysis of local search landscapes. J. Oper. Res. Soc. 55(7), 687–693 (2004)

    Article  Google Scholar 

  15. Shor, N.Z.: Semidefinite Programming Bounds for Extremal Graph Problem, pp. 265–298. Springer, Boston (1998). https://doi.org/10.1007/978-1-4757-6015-6_8

    Book  Google Scholar 

  16. Simanchev, R.: Linear symmetries of matchings polyhedron and graph automorphisms. Vestnik Omskogo Universiteta 1, 18–20 (1996). (in Russian)

    MATH  Google Scholar 

  17. Zhelobenko, D.P.: Compact Lie Groups and their Representations, Translations of mathematical monographs, vol. 40. Providence, AMS (1973)

    Google Scholar 

Download references

Acknowledgments

The authors thank V.M. Gichev for helpful comments on the preliminary version of the manuscript. The work on Sects. 2 and 3 was funded in accordance with the state task of the Omsk Scientific Center SB RAS (project AAAA-A19-119052890058-2). The rest of the work was funded by the program of fundamental scientific research of the SB RAS, I.5.1., project 0314-2019-0019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anton V. Eremeev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eremeev, A.V., Yurkov, A.S. (2020). On Symmetry Groups of Some Quadratic Programming Problems. In: Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science(), vol 12095. Springer, Cham. https://doi.org/10.1007/978-3-030-49988-4_3

Download citation

Publish with us

Policies and ethics