Advertisement

On Symmetry Groups of Some Quadratic Programming Problems

  • Anton V. EremeevEmail author
  • Alexander S. Yurkov
Conference paper
  • 202 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

Solution and analysis of mathematical programming problems may be simplified when these problems are symmetric under appropriate linear transformations. In particular, a knowledge of the symmetries may help reduce the problem dimension, cut the search space by linear cuts or obtain new local optima from the ones previously found. While the previous studies of symmetries in the mathematical programming usually dealt with permutations of coordinates of the solutions space, the present paper considers a larger group of invertible linear transformations. We study a special case of the quadratic programming problem, where the objective function and constraints are given by quadratic forms, and the sum of all matrices of quadratic forms, involved in the constraints, is a positive definite matrix. In this setting, it is sufficient to consider only orthogonal transformations of the solution space. In this group of orthogonal transformations, we describe the structure of the subgroup which gives the symmetries of the problem. Besides that, a method for finding such symmetries is outlined, and illustrated in two simple examples.

Keywords

Non-convex programming Orthogonal transformation Symmetry group Lie group 

Notes

Acknowledgments

The authors thank V.M. Gichev for helpful comments on the preliminary version of the manuscript. The work on Sects. 2 and 3 was funded in accordance with the state task of the Omsk Scientific Center SB RAS (project AAAA-A19-119052890058-2). The rest of the work was funded by the program of fundamental scientific research of the SB RAS, I.5.1., project 0314-2019-0019.

References

  1. 1.
    Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer programs. Math. Program. 137, 65–90 (2013)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Chervyakov, O.: Affine symmetries of the polyhedron of independence system with uhit shift. Discretnyi Analiz i Issledovanie Operacii 2(2), 82–96 (1999). (in Russian)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on spatial branch-and-bound for circle packing in a square. Discrete Appl. Math. 161(1), 96–106 (2013)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Eremeev, A.V., Tyunin, N.N., Yurkov, A.S.: Non-convex quadratic programming problems in short wave antenna array optimization. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 34–45. Springer, Cham (2019).  https://doi.org/10.1007/978-3-030-22629-9_3CrossRefzbMATHGoogle Scholar
  5. 5.
    Garnier, J., Kallel, L.: How to Detect All Maxima of a Function, pp. 343–370. Springer, Heidelberg (2001).  https://doi.org/10.1007/978-3-662-04448-3_17CrossRefzbMATHGoogle Scholar
  6. 6.
    Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1), 95–128 (2004).  https://doi.org/10.1016/j.jpaa.2003.12.011MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Kolokolov, A.A., Orlovskaya, T.G., Rybalka, M.F.: Analysis of integer programming algorithms with l-partition and unimodular transformations. Autom. Remote Control 73(2), 369–380 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Kouyialis, G., Wang, X., Misener, R.: Symmetry detection for quadratic optimization using binary layered graphs. Processes 7(11) (2019).  https://doi.org/10.3390/pr7110838
  9. 9.
    Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, Cambridge (1985)zbMATHGoogle Scholar
  10. 10.
    Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131 (2010).  https://doi.org/10.1007/s10107-010-0351-0
  11. 11.
    Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010).  https://doi.org/10.1007/978-3-540-68279-0_17CrossRefzbMATHGoogle Scholar
  12. 12.
    Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed integer programs. Math. Program. Comput. 11(1), 37–93 (2018).  https://doi.org/10.1007/s12532-018-0140-yMathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Prugel-Bennett, A.: Symmetry breaking in population-based optimization. Trans. Evol. Comp 8(1), 63–79 (2004).  https://doi.org/10.1109/TEVC.2003.819419MathSciNetCrossRefGoogle Scholar
  14. 14.
    Reeves, C., Eremeev, A.: Statistical analysis of local search landscapes. J. Oper. Res. Soc. 55(7), 687–693 (2004)CrossRefGoogle Scholar
  15. 15.
    Shor, N.Z.: Semidefinite Programming Bounds for Extremal Graph Problem, pp. 265–298. Springer, Boston (1998).  https://doi.org/10.1007/978-1-4757-6015-6_8CrossRefGoogle Scholar
  16. 16.
    Simanchev, R.: Linear symmetries of matchings polyhedron and graph automorphisms. Vestnik Omskogo Universiteta 1, 18–20 (1996). (in Russian)zbMATHGoogle Scholar
  17. 17.
    Zhelobenko, D.P.: Compact Lie Groups and their Representations, Translations of mathematical monographs, vol. 40. Providence, AMS (1973)Google Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsOmskRussia
  2. 2.Institute of Radiophysics and Physical Electronics Omsk Scientific Center SB RASOmskRussia

Personalised recommendations