# On Symmetry Groups of Some Quadratic Programming Problems

Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

## Abstract

Solution and analysis of mathematical programming problems may be simplified when these problems are symmetric under appropriate linear transformations. In particular, a knowledge of the symmetries may help reduce the problem dimension, cut the search space by linear cuts or obtain new local optima from the ones previously found. While the previous studies of symmetries in the mathematical programming usually dealt with permutations of coordinates of the solutions space, the present paper considers a larger group of invertible linear transformations. We study a special case of the quadratic programming problem, where the objective function and constraints are given by quadratic forms, and the sum of all matrices of quadratic forms, involved in the constraints, is a positive definite matrix. In this setting, it is sufficient to consider only orthogonal transformations of the solution space. In this group of orthogonal transformations, we describe the structure of the subgroup which gives the symmetries of the problem. Besides that, a method for finding such symmetries is outlined, and illustrated in two simple examples.

## Keywords

Non-convex programming Orthogonal transformation Symmetry group Lie group

## References

1. 1.
Bödi, R., Herr, K., Joswig, M.: Algorithms for highly symmetric linear and integer programs. Math. Program. 137, 65–90 (2013)
2. 2.
Chervyakov, O.: Affine symmetries of the polyhedron of independence system with uhit shift. Discretnyi Analiz i Issledovanie Operacii 2(2), 82–96 (1999). (in Russian)
3. 3.
Costa, A., Hansen, P., Liberti, L.: On the impact of symmetry-breaking constraints on spatial branch-and-bound for circle packing in a square. Discrete Appl. Math. 161(1), 96–106 (2013)
4. 4.
Eremeev, A.V., Tyunin, N.N., Yurkov, A.S.: Non-convex quadratic programming problems in short wave antenna array optimization. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 34–45. Springer, Cham (2019).
5. 5.
Garnier, J., Kallel, L.: How to Detect All Maxima of a Function, pp. 343–370. Springer, Heidelberg (2001).
6. 6.
Gatermann, K., Parrilo, P.A.: Symmetry groups, semidefinite programs, and sums of squares. J. Pure Appl. Algebra 192(1), 95–128 (2004).
7. 7.
Kolokolov, A.A., Orlovskaya, T.G., Rybalka, M.F.: Analysis of integer programming algorithms with l-partition and unimodular transformations. Autom. Remote Control 73(2), 369–380 (2012)
8. 8.
Kouyialis, G., Wang, X., Misener, R.: Symmetry detection for quadratic optimization using binary layered graphs. Processes 7(11) (2019).
9. 9.
Lancaster, P., Tismenetsky, M.: The Theory of Matrices. Academic Press, Cambridge (1985)
10. 10.
Liberti, L.: Reformulations in mathematical programming: automatic symmetry detection and exploitation. Math. Program. 131 (2010).
11. 11.
Margot, F.: Symmetry in integer linear programming. In: Jünger, M., et al. (eds.) 50 Years of Integer Programming 1958-2008, pp. 647–686. Springer, Heidelberg (2010).
12. 12.
Pfetsch, M.E., Rehn, T.: A computational comparison of symmetry handling methods for mixed integer programs. Math. Program. Comput. 11(1), 37–93 (2018).
13. 13.
Prugel-Bennett, A.: Symmetry breaking in population-based optimization. Trans. Evol. Comp 8(1), 63–79 (2004).
14. 14.
Reeves, C., Eremeev, A.: Statistical analysis of local search landscapes. J. Oper. Res. Soc. 55(7), 687–693 (2004)
15. 15.
Shor, N.Z.: Semidefinite Programming Bounds for Extremal Graph Problem, pp. 265–298. Springer, Boston (1998).
16. 16.
Simanchev, R.: Linear symmetries of matchings polyhedron and graph automorphisms. Vestnik Omskogo Universiteta 1, 18–20 (1996). (in Russian)
17. 17.
Zhelobenko, D.P.: Compact Lie Groups and their Representations, Translations of mathematical monographs, vol. 40. Providence, AMS (1973)Google Scholar