Skip to main content

Improving Effectiveness of Neighborhood-Based Algorithms for Optimization of Costly Pseudo-Boolean Black-Box Functions

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Abstract

Optimization of costly black-box functions is hard. Not only we know next to nothing about their nature, we need to calculate their values in as small number of points as possible. The problem is even more pronounced for pseudo-Boolean black-box functions since it is harder to approximate them. For such functions the local search methods where a neighborhood of a point must be traversed are in a particular disadvantage compared to evolutionary strategies. In the paper we propose two heuristics that make use of the search history to prioritize the more promising points from a neighborhood to be processed first. In the experiments involving minimization of an extremely costly pseudo-Boolean black-box function we show that the proposed heuristics significantly improve the performance of a hill climbing algorithm, making it outperform (1+1)-EA with an additional benefit of being more stable.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Audet, C., Hare, W.: Derivative-Free and Blackbox Optimization. Springer Series in Operations Research and Financial Engineering. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-319-68913-5

    Book  MATH  Google Scholar 

  2. Balyo, T., Biere, A., Iser, M., Sinz, C.: SAT race 2015. Artif. Intell. 241, 45–65 (2016)

    Article  MathSciNet  Google Scholar 

  3. Bard, G.V.: Algebraic Cryptanalysis, 1st edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-0-387-88757-9

    Book  MATH  Google Scholar 

  4. Biere, A., Heule, M., van Maaren, H., Walsh, T. (eds.): Handbook of Satisfiability. Frontiers in Artificial Intelligence and Applications, vol. 185. IOS Press, Amsterdam (2009)

    MATH  Google Scholar 

  5. Brimberg, J., Hansen, P., Mladenovic, N., Taillard, É.D.: Improvement and comparison of heuristics for solving the uncapacitated multisource weber problem. Oper. Res. 48(3), 444–460 (2000). https://doi.org/10.1287/opre.48.3.444.12431

    Article  Google Scholar 

  6. De Cannière, C., Preneel, B.: Trivium. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 244–266. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_18

    Chapter  Google Scholar 

  7. Irkutsk supercomputer center of SB RAS. http://hpc.icc.ru

  8. Costa, A., Nannicini, G.: RBFOpt: an open-source library for black-box optimization with costly function evaluations. Math. Program. Comput. 10(4), 597–629 (2018). https://doi.org/10.1007/s12532-018-0144-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Droste, S., Jansen, T., Wegener, I.: On the analysis of the (1+1) evolutionary algorithm. Theor. Comput. Sci. 276(1–2), 51–81 (2002). https://doi.org/10.1016/S0304-3975(01)00182-7

    Article  MathSciNet  MATH  Google Scholar 

  10. Günther, C.G.: Alternating step generators controlled by de Bruijn sequences. In: Chaum, D., Price, W.L. (eds.) EUROCRYPT 1987. LNCS, vol. 304, pp. 5–14. Springer, Heidelberg (1988). https://doi.org/10.1007/3-540-39118-5_2

    Chapter  Google Scholar 

  11. Gutmann, H.M.: A radial basis function method for global optimization. J. Glob. Opt. 19(3), 201–227 (2001)

    Article  MathSciNet  Google Scholar 

  12. Hell, M., Johansson, T., Maximov, A., Meier, W.: The grain family of stream ciphers. In: Robshaw, M., Billet, O. (eds.) New Stream Cipher Designs. LNCS, vol. 4986, pp. 179–190. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-68351-3_14

    Chapter  Google Scholar 

  13. Heule, M.J.H., Kullmann, O., Biere, A.: Cube-and-conquer for satisfiability. Handbook of Parallel Constraint Reasoning, pp. 31–59. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-63516-3_2

    Chapter  Google Scholar 

  14. Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Glob. Opt. 13(4), 455–492 (1998). https://doi.org/10.1023/A:1008306431147

    Article  MathSciNet  MATH  Google Scholar 

  15. Kempe, D., Kleinberg, J., Tardos, E.: Maximizing the spread of influence through a social network. In: KDD 2003, pp. 137–146. Association for Computing Machinery, New York (2003). https://doi.org/10.1145/956750.956769

  16. Kochemazov, S., Zaikin, O.: ALIAS: a modular tool for finding backdoors for SAT. In: Beyersdorff, O., Wintersteiger, C.M. (eds.) SAT 2018. LNCS, vol. 10929, pp. 419–427. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94144-8_25

    Chapter  MATH  Google Scholar 

  17. Kolda, T.G., Lewis, R.M., Torczon, V.: Optimization by direct search: new perspectives on some classical and modern methods. SIAM Rev. 45(3), 385–482 (2003)

    Article  MathSciNet  Google Scholar 

  18. Menezes, A.J., Vanstone, S.A., Oorschot, P.C.V.: Handbook of Applied Cryptography, 1st edn. CRC Press Inc., Boca Raton (1996)

    MATH  Google Scholar 

  19. Metropolis, N., Ulam, S.: The Monte Carlo method. J. Am. Stat. Assoc. 44(247), 335–341 (1949)

    Article  Google Scholar 

  20. Pavlenko, A., Buzdalov, M., Ulyantsev, V.: Fitness comparison by statistical testing in construction of SAT-based guess-and-determine cryptographic attacks. In: GECCO 2019, pp. 312–320 (2019). https://doi.org/10.1145/3321707.3321847

  21. Pavlenko, A., Semenov, A., Ulyantsev, V.: Evolutionary computation techniques for constructing SAT-based attacks in algebraic cryptanalysis. In: Kaufmann, P., Castillo, P.A. (eds.) EvoApplications 2019. LNCS, vol. 11454, pp. 237–253. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16692-2_16

    Chapter  Google Scholar 

  22. Rios, L., Sahinidis, N.: Derivative-free optimization: a review of algorithms and comparison of software implementations. J. Glob. Opt. 56, 1247–1293 (2013). https://doi.org/10.1007/s10898-012-9951-y

    Article  MathSciNet  MATH  Google Scholar 

  23. Russell, S., Norvig, P.: Artificial Intelligence: A Modern Approach, 3rd edn. Prentice Hall, Upper Saddle River (2009)

    MATH  Google Scholar 

  24. Semenov, A., Otpuschennikov, I., Gribanova, I., Zaikin, O., Kochemazov, S.: Translation of algorithmic descriptions of discrete functions to SAT with applications to cryptanalysis problems. Log. Methods Comput. Sci. 16, 29:1–29:42 (2020)

    MATH  Google Scholar 

  25. Semenov, A., Zaikin, O.: Algorithm for finding partitionings of hard variants of Boolean satisfiability problem with application to inversion of some cryptographic functions. SpringerPlus 5(1), 1–16 (2016)

    Article  Google Scholar 

  26. Semenov, A., Zaikin, O., Otpuschennikov, I., Kochemazov, S., Ignatiev, A.: On cryptographic attacks using backdoors for SAT. In: AAAI 2018, pp. 6641–6648 (2018)

    Google Scholar 

  27. Verel, S., Derbel, B., Liefooghe, A., Aguirre, H., Tanaka, K.: A surrogate model based on walsh decomposition for pseudo-Boolean functions. In: Auger, A., Fonseca, C.M., Lourenço, N., Machado, P., Paquete, L., Whitley, D. (eds.) PPSN 2018. LNCS, vol. 11102, pp. 181–193. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99259-4_15

    Chapter  Google Scholar 

  28. Wolfram, S.: Random sequence generation by cellular automata. Adv. Appl. Math. 7(2), 123–169 (1986)

    Article  MathSciNet  Google Scholar 

  29. Yasumoto, T., Okuwaga, T.: Rokk 1.0.1. In: SAT Competition 2014: Solver and Benchmark Descriptions. Series of Publications B, vol. B-2017-1, p. 70. Department of Computer Science, University of Helsinki (2014)

    Google Scholar 

  30. Zaikin, O., Kochemazov, S.: An improved SAT-based guess-and-determine attack on the alternating step generator. In: Nguyen, P., Zhou, J. (eds.) ISC 2017. LNCS, vol. 10599, pp. 21–38. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69659-1_2

    Chapter  Google Scholar 

  31. Zaikin, O., Kochemazov, S.: Black-box optimization in an extended search space for SAT solving. In: Khachay, M., Kochetov, Y., Pardalos, P. (eds.) MOTOR 2019. LNCS, vol. 11548, pp. 402–417. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22629-9_28

    Chapter  MATH  Google Scholar 

  32. Zaikin, O., Kochemazov, S.: On black-box optimization in divide-and-conquer SAT solving. Opt. Methods Softw., 1–25 (2019). https://doi.org/10.1080/10556788.2019.1685993

Download references

Acknowledgements

The research was partially supported by Russian Foundation for Basic Research (grant no. 19-07-00746-a). Stepan Kochemazov is additionally supported by the Council for Grants of the President of Russia (stipend SP-2017.2019.5).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oleg Zaikin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zaikin, O., Kochemazov, S. (2020). Improving Effectiveness of Neighborhood-Based Algorithms for Optimization of Costly Pseudo-Boolean Black-Box Functions. In: Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science(), vol 12095. Springer, Cham. https://doi.org/10.1007/978-3-030-49988-4_26

Download citation

Publish with us

Policies and ethics