Advertisement

An Improved Approximation Algorithm for the Coupled-Task Scheduling Problem with Equal Exact Delays

  • Alexander AgeevEmail author
  • Mikhail Ivanov
Conference paper
  • 198 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

We study the coupled-task single machine scheduling problem with equal exact delays and makespan as the objective function. It is known that the problem cannot be approximated with a factor better than 1.25 unless P \(=\) NP. In this paper, we present a 2.5-approximation algorithm for this problem, which improves the best previously known approximation bound of 3. The algorithm runs in time \(O(n\log n)\) where n is the number of jobs.

Keywords

Coupled-task scheduling Inapproximability lower bound Approximation algorithm Worst-case analysis 

Notes

Acknowledgments

The authors thank the anonymous referees for their helpful comments and suggestions.

References

  1. 1.
    Ageev, A.A., Baburin, A.E.: Approximation algorithms for UET scheduling problems with exact delays. Oper. Res. Lett. 35, 533–540 (2007)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ageev, A., Ivanov, M.: Approximating coupled-task scheduling problems with equal exact delays. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 259–271. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44914-2_21CrossRefGoogle Scholar
  3. 3.
    Ageev, A.A., Kononov, A.V.: Approximation algorithms for scheduling problems with exact delays. In: Erlebach, T., Kaklamanis, C. (eds.) WAOA 2006. LNCS, vol. 4368, pp. 1–14. Springer, Heidelberg (2007).  https://doi.org/10.1007/11970125_1CrossRefzbMATHGoogle Scholar
  4. 4.
    Baptiste, P.: A note on scheduling identical coupled tasks in logarithmic time. Disc. Appl. Math. 158, 583–587 (2010)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Békési, J., Galambos, G., Jung, M.N., Oswald, M., Reinelt, G.: A branch-and-bound algorithm for the coupled task problem. Math. Methods Oper. Res. 80(1), 47–81 (2014).  https://doi.org/10.1007/s00186-014-0469-6MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Blazewicz, J., Pawlak, G., Tanas, M., Wojciechowicz, W.: New algorithms for coupled tasks scheduling – a survey. RAIRO - Operations Research - Recherche Operationnelle 46, 335–353 (2012)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Condotta, A., Shakhlevich, N.V.: Scheduling coupled-operation jobs with exact time-lags. Discrete Appl. Math. 160, 2370–2388 (2012)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Farina, A., Neri, P.: Multitarget interleaved tracking for phased array radar. IEEE Proc. Part F Comm. Radar Signal Process. 127, 312–318 (1980)CrossRefGoogle Scholar
  9. 9.
    Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. Freeman, San Francisco (1979)zbMATHGoogle Scholar
  10. 10.
    Elshafei, M., Sherali, H.D., Smith, J.C.: Radar pulse interleaving for multi-target tracking. Naval Res. Logist. 51, 79–94 (2004)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Izquierdo-Fuente, A., Casar-Corredera, J.R.: Optimal radar pulse scheduling using neural networks. In: IEEE International Conference on Neural Networks, vol. 7, pp. 4588–4591 (1994)Google Scholar
  12. 12.
    Graham, R.L., Lawler, E.L., Lenstra, J.K., Rinnooy Kan, A.H.G.: Optimization and approximation in deterministic sequencing and scheduling: a survey. Ann. Discrete Math. 5, 287–326 (1979)Google Scholar
  13. 13.
    Hwang, F.J., Lin, B.M.T.: Coupled-task scheduling on a single machine subject to a fixed-job-sequence. J. Comput. Ind. Eng. 60, 690–698 (2011)CrossRefGoogle Scholar
  14. 14.
    Lawler, E., Lenstra, J., Rinnooy Kan, A., Shmoys, D.: Sequencing and scheduling: algorithms and complexity, In: Handbooks in Operations Research and Management Science, Logistics of Production and Inventory, 4, North Holland, Amsterdam, pp. 445–522 (1993)Google Scholar
  15. 15.
    Orman, A.J., Potts, C.N.: On the complexity of coupled-task scheduling. Discrete Appl. Math. 72, 141–154 (1997)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sherali, H.D., Smith, J.C.: Interleaving two-phased jobs on a single machine. Discrete Optim. 2, 348–361 (2005)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Sobolev Institute of MathematicsNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia

Personalised recommendations