Skip to main content

The Continuous Hotelling Pure Location Game with Elastic Demand Revisited

  • Conference paper
  • First Online:
Mathematical Optimization Theory and Operations Research (MOTOR 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12095))

  • 658 Accesses

Abstract

The Hotelling pure location game has been revisited. It is assumed that there are two identical players, strategy sets are one-dimensional, and demand as a function of distance is constant or strictly decreasing. Besides qualitative properties of conditional payoff functions, attention is given to the structure of the equilibrium set, best-response correspondences and the existence of potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For an overview and discussion of the literature we refer to [5] and [6].

  2. 2.

    Its standard interpretation in location theory concerns two competing vendors on a beach. The vendors simultaneously and independently select a position. Customers go to the closest vendor and split themselves evenly if the vendors choose an identical position. Each vendor wants to maximize his number of customers. One can reframe the interpretation as two candidates placing themselves along an ideological spectrum, with citizens voting for whichever one is closest (see e.g. [4]).

  3. 3.

    However, see concluding remark 3 in Sect. 8.

  4. 4.

    Here \(\{ L \} - B_i(L-x)\) is the Minkowski sum of the sets \( \{ L \}\) and \(- B_i(L-x)\).

  5. 5.

    So, if f is continuous, then by Proposition 1(5), these formulas become \( D u_1^{(x_2)}(x_1) = f(x_1) - \frac{1}{2} f( \frac{x_2-x_1}{2}) \; (x_1 < x_2)\) and \( D u_1^{(x_2)}(x_1) = - f(L-x_1) + \frac{1}{2} f( \frac{x_1-x_2}{2}) \; (x_1 > x_2)\).

  6. 6.

    For the cHg, a function \(P: S \times S \rightarrow \mathbb {R}\) is (1) a generalized ordinal potential if for every \(a_1, b_1, z \in [0,L]\) it holds that \( u_1(a_1, z)< u_1(b_1; z) \; \Rightarrow \; P(a_1,z) < P(b_1,z)\) and for every \(a_2, b_2, z \in [0,L]\) it holds that \( u_2(z,a_1)< u_2(z,b_1) \; \Rightarrow \; P(z,a_1) < P(z,b_1)\); (2) a best-response potential if \( B_1(x_2) = \mathrm {argmax}_{x_1 \in S} P(x_1,x_2) \; (x_2 \in S)\) and \(B_2(x_1) = \mathrm {argmax}_{x_2 \in S} P(x_1,x_2) \; (x_1 \in S)\); (3) a quasi potential if \( \mathrm {argmax} \, P = E\). (4) a weak quasi potential if \( \mathrm {argmax} \, P \subseteq E\). In this case, one calls the game a ‘generalized ordinal potential game’ (etc.).

References

  1. Hotelling, H.: Stability in competition. Econ. J. 39(153), 41–57 (1929)

    Article  Google Scholar 

  2. Smithies, A.: Optimum location in spatial competition. J. Polit. Econ. 44, 423–439 (1941)

    Article  Google Scholar 

  3. Boulding, K.: Economics Analysis: Microeconomics. Harper & Row, New York (1955)

    Google Scholar 

  4. Davis, O., Hinich, M.J., Ordeshook, P.C.: An expository development of a mathematical model of the electoral process. Am. Polit. Sci. Rev. 44, 426–448 (1970)

    Article  Google Scholar 

  5. Eaton, B.C., Lipsey, R.G.: The principle of minimum differentiation reconsidered: some new developments in the theory of spatial competition. Rev. Econ. Stud. 42(1), 27–49 (1975)

    Article  Google Scholar 

  6. Graitson, D.: Spatial competition à la hotelling: a selective survey. J. Ind. Econ. 31(1/2), 11–25 (1982)

    Article  Google Scholar 

  7. Anderson, S.P., de Palma, A., Thisse, J.-F.: Discrete Choice Theory of Product Differentiation. MIT Press, Cambridge (1992)

    Book  Google Scholar 

  8. Reny, P.: On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica 67, 1029–1056 (1999)

    Article  MathSciNet  Google Scholar 

  9. Mazalov, V., Sakaguchi, M.: Location game on the plain. Int. Game Theory Rev. 5(1), 13–25 (2003)

    Article  MathSciNet  Google Scholar 

  10. von Mouche, P.H.M., Quartieri, F.: Cournot equilibrium uniqueness via demi-concavity. Optimization 67(4), 41–455 (2017)

    MathSciNet  MATH  Google Scholar 

  11. Iimura, T.: Private Communication. Tokyo Metropolitan University, Tokyo, Japan (2017)

    Google Scholar 

  12. Iimura, T., von Mouche, P.H.M., Watanabe, T.: Best-response potential for hotelling pure location games. Econ. Lett. 160, 73–77 (2017)

    Article  MathSciNet  Google Scholar 

  13. von Mouche, P., Pijnappel, W.: The hotelling bi-matrix game. Optim. Lett. 12(1), 187–202 (2015). https://doi.org/10.1007/s11590-015-0964-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Iimura, T., von Mouche, P.H.M.: Discrete hotelling pure location games: potentials and equilibria. Working Paper, Wageningen Universiteit (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre von Mouche .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

von Mouche, P. (2020). The Continuous Hotelling Pure Location Game with Elastic Demand Revisited. In: Kononov, A., Khachay, M., Kalyagin, V., Pardalos, P. (eds) Mathematical Optimization Theory and Operations Research. MOTOR 2020. Lecture Notes in Computer Science(), vol 12095. Springer, Cham. https://doi.org/10.1007/978-3-030-49988-4_17

Download citation

Publish with us

Policies and ethics