Advertisement

Dixit-Stiglitz-Krugman Model with Nonlinear Costs

  • Ivan Belyaev
  • Igor BykadorovEmail author
Conference paper
  • 198 Downloads
Part of the Lecture Notes in Computer Science book series (LNCS, volume 12095)

Abstract

We study the market equilibrium in international trade monopolistic competition model a‘la Dixit-Stiglitz-Krugman with homogeneous firms. The utility of consumers are additive separable. Transport costs are of “iceberg type.” The only production factor is labor. The concrete functional form of sub-utility function is assumed unknown. Thus, it is not possible to get the equilibrium in closed form. We examine the local symmetric comparative statics of consumption, prices, firms masses and firms sizes with respect to transport costs. For linear production costs, the results about equilibria near free trade and autarky are known. We show that many of these results are true for the case of non-linear production costs.

Keywords

Dixit-Stiglitz-Krugman Model Market equilibrium Free trade Autarky Comparative statics 

Notes

Acknowledgments

The authors are very grateful to the anonymous reviewers for very useful suggestions for improving the text. The study was carried out within the framework of the state contract of the Sobolev Institute of Mathematics (project no. 0314-2019-0018). The work was supported in part by the Russian Foundation for Basic Research, projects 18-010-00728 and 19-010-00910 and by the Russian Ministry of Science and Education under the 5-100 Excellence Programme.

References

  1. 1.
    Antoshchenkova, I.V., Bykadorov, I.A.: Monopolistic competition model: the impact of technological innovation on equilibrium and social optimality. Autom. Remote Control 78(3), 537–556 (2017).  https://doi.org/10.1134/S0005117917030134MathSciNetCrossRefGoogle Scholar
  2. 2.
    Arkolakis, C., Costinot, A., Donaldson, D., Rodríguez-Clare, A.: The elusive pro-competitive effects of trade. Rev. Econ. Stud. 86(1), 46–80 (2019)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Arkolakis, C., Costinot, A., Rodríguez-Clare, A.: New trade models, same old gains? Am. Econ. Rev. 102(1), 94–130 (2012)CrossRefGoogle Scholar
  4. 4.
    Behrens, K., Murata, Y.: General equilibrium models of monopolistic competition: a new approach. J. Econ. Theory 136, 776–787 (2007)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Belyaev, I., Bykadorov, I.: International trade models in monopolistic competition: the case of non-linear costs. IEEE Xplore, pp. 12–16 (2019)Google Scholar
  6. 6.
    Bykadorov, I.: Monopolistic competition model with different technological innovation and consumer utility levels. In: CEUR Workshop Proceeding, vol. 1987, pp. 108–114 (2017)Google Scholar
  7. 7.
    Bykadorov, I.: Monopolistic competition with investments in productivity. Optim. Lett. 13(8), 1803–1817 (2018).  https://doi.org/10.1007/s11590-018-1336-9MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Bykadorov, I., Ellero, A., Funari, S., Kokovin, S., Molchanov, P.: Painful birth of trade under classical monopolistic competition. National Research University Higher School of Economics, Basic Research Program Working Papers, Series: Economics, WP BRP 132/EC/2016. https://www.hse.ru/data/2016/04/06/1127112143/132EC2016.pdf
  9. 9.
    Bykadorov, I., Ellero, A., Funari, S., Kokovin, S., Pudova, M.: Chain store against manufacturers: regulation can mitigate market distortion. In: Kochetov, Y., Khachay, M., Beresnev, V., Nurminski, E., Pardalos, P. (eds.) DOOR 2016. LNCS, vol. 9869, pp. 480–493. Springer, Cham (2016).  https://doi.org/10.1007/978-3-319-44914-2_38CrossRefGoogle Scholar
  10. 10.
    Bykadorov, I., Kokovin, S.: Can a larger market foster R&D under monopolistic competition with variable mark-ups? Res. Econ. 71(4), 663–674 (2017)CrossRefGoogle Scholar
  11. 11.
    Campbell, J.R., Hopenhayn, H.A.: Market size matters. J. Ind. Econ. 53(1), 1–25 (2005)CrossRefGoogle Scholar
  12. 12.
    Chamberlin, E.H.: The Theory of Monopolistic Competition: A Re-Orientation of the Theory of Value. Harvard University Press, Cambridge (1933)Google Scholar
  13. 13.
    Chamberlin, E.H.: The Theory of Monopolistic Competition. Harvard University Press, Cambridge (1962)Google Scholar
  14. 14.
    Dixit, A., Stiglitz, J.: Monopolistic competition and optimum product diversity. Am. Econ. Rev. 67(3), 297–308 (1977)Google Scholar
  15. 15.
    Hummels, D., Klenow, P.T.: The variety and quality of a nation’s exports. Am. Econ. Rev. 95(3), 704–723 (2005)CrossRefGoogle Scholar
  16. 16.
    Krugman, P.: Increasing returns, monopolistic competition and international trade. J. Int. Econ. 9(4), 469–479 (1979)CrossRefGoogle Scholar
  17. 17.
    Krugman, P.: Scale economies, product differentiation, and the pattern of trade. Am. Econ. Rev. 70(5), 950–959 (1980)Google Scholar
  18. 18.
    Melitz, M.J.: The impact of trade on intra-industry reallocations and aggregate industry productivity. Econometrica 71(6), 1695–1725 (2003)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Melitz, M.J., Redding, S.J.: Missing gains from trade? Am. Econ. Rev. 104(5), 317–321 (2014)CrossRefGoogle Scholar
  20. 20.
    Melitz, M.J., Redding, S.J.: New trade models, new welfare implications. Am. Econ. Rev. 105(3), 1105–1146 (2015)CrossRefGoogle Scholar
  21. 21.
    Redding, S.: Theories of heterogeneous firms and trade. Ann. Rev. Econ. 3, 77–105 (2011)CrossRefGoogle Scholar
  22. 22.
    Syverson, C.: Prices, spatial competition, and heterogeneous producers: an empirical test. J. Ind. Econ. 55(2), 197–222 (2007)CrossRefGoogle Scholar
  23. 23.
    Tilzo, O., Bykadorov, I.: Retailing under monopolistic competition: a comparative analysis. IEEE Xplore, pp. 156–161 (2019)Google Scholar
  24. 24.
    Zhelobodko, E., Kokovin, S., Parenti, M., Thisse, J.-F.: Monopolistic competition in general equilibrium: beyond the constant elasticity of substitution. Econometrica 80(6), 2765–2784 (2012)MathSciNetCrossRefGoogle Scholar

Copyright information

© Springer Nature Switzerland AG 2020

Authors and Affiliations

  1. 1.Novosibirsk State UniversityNovosibirskRussia
  2. 2.Sobolev Institute of Mathematics SB RASNovosibirskRussia
  3. 3.Novosibirsk State University of Economics and ManagementNovosibirskRussia

Personalised recommendations