Skip to main content

Abstract

Analysing complex phenomena, such as the world we live in, or complex interactions, also requires methods that are suitable for considering both the individual aspects of these phenomena and the resulting overall system. As a method well suited for the consideration of complex phenomena, we consider agent-based models in this study. Using two programming languages (Netlogo and Julia) we simulate a simple bounded-rationality opinion formation model with and without backfire effect. We analyzed, which of the languages is better for the creation of agent-based models and found, that both languages have some advantages for the creation of simulations. While Julia is much faster in simulating a model, Netlogo has a nice Interface and is more intuitive to use for non-computer scientists. Thus the choice of the programming language remains always a trade-off and in future more complex models should be considered using both programming languages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barnier, J.: rmdformats: HTML output formats and templates for ‘rmarkdown’ documents. R package version 0.3.6 (2019). https://CRAN.R-project.org/package=rmdformats

  2. Bonabeau, E.: Agent-based modeling: methods and techniques for simulating human systems. Proc. Nat. Acad. Sci. U.S.A. 99(Suppl 3), 7280–7287 (2002). https://doi.org/10.1073/pnas.082080899

    Article  Google Scholar 

  3. Bruch, E., Atwell, J.: Agent-based models in empirical social research. Sociol. Methods Res. 44(2), 186–221 (2015). https://doi.org/10.1177/0049124113506405

  4. Byrne, D.: Complexity Theory and the Social Sciences. Routledge, London (1999). https://doi.org/10.4324/9780203003916

    Book  Google Scholar 

  5. Valdez, A.C.: rmdtemplates: rmdtemplates - an opinionated collection of rmarkdown templates. R package version 0.4.0.0000 (2020). https://github.com/statisticsforsocialscience/rmd_templates

  6. Calero Valdez, A., Ziefle, M.: Human factors in the age of algorithms. understanding the human-in-the-loop using agent-based modeling. In: Meiselwitz, G. (ed.) SCSM 2018. LNCS, vol. 10914, pp. 357–371. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91485-5_27. ISBN 978-3-319-91485-5

    Chapter  Google Scholar 

  7. Valdez, A.C., Ziefle, M.: Predicting acceptance of novel technology from social network data-an agent-based simulation-approach. In: Proceedings of the International Conference on Competitive Manufacturing (2019)

    Google Scholar 

  8. Conte, R., Paolucci, M.: On agent based modelling and computational social science. SSRN Electron. J. (2011). https://doi.org/10.2139/ssrn.1876517

  9. Conte, R., et al.: Manifesto of computational social science. Eur. Phys. J.-Spec. Top. 214, 325 (2012). https://doi.org/10.1140/epjst/e2012-01697-8

    Article  Google Scholar 

  10. Epstein, J.: Generative social science: studies in agent-based computational models, January 2006

    Google Scholar 

  11. Epstein, J.M.: Generative Social Science: Studies in Agent-Based Computational Modeling. Princeton Studies in Complexity. Princeton University Press, Princeton (2007). ISBN 0-691-12547-3

    Google Scholar 

  12. Flache, A., et al.: Models of social influence: towards the next frontiers. JASSS 20(4), 2 (2017). https://doi.org/10.18564/jasss.3521. ISSN 1460-7425

    Article  Google Scholar 

  13. French, J.R.P.: A formal theory of social power. Psychol. Rev. 63(3), 181–194 (1956). https://doi.org/10.1037/h0046123. ISSN 0033-295X

    Article  Google Scholar 

  14. Gilbert, N., Troitzsch, K.G.: Simulation for The Social Scientist, 2nd edn. Open University Press, Buckingham (2005)

    Google Scholar 

  15. Hegselmann, R., Krause, U.: Opinion dynamics and bounded confidence: models, analysis and simulation. JASSS 5(3), 3–33 (2002). ISSN 1460-7425

    Google Scholar 

  16. Jager, W.: Uniformity, bipolarization and pluriformity captured as generic stylized behavior with an agent-based simulation model of attitude change. Technical report, pp. 295–303 (2004)

    Google Scholar 

  17. Kiesling, E., et al.: Agent-based simulation of innovation diffusion: a review. CEJOR 20, 183–230 (2012). https://doi.org/10.1007/s10100-011-0210-y

    Article  Google Scholar 

  18. Nadal, J.-P.: Meet, discuss, and segregate!. Complexity 7(3), 55–63 (2002)

    Article  Google Scholar 

  19. Revelle, W.: psych: procedures for psychological, psychometric, and personality research. R package version 1.8.12 (2019). https://CRAN.R-project.org/package=psych

  20. Rouchier, J., et al.: Progress in model-to-model analysis. J. Artif. Soc. Soc. Simul. 11(2), 8 (2008)

    Google Scholar 

  21. Smith, E.R., Conrey, F.R.: Agent-based modeling: a new approach for theory building in social psychology. Pers. Soc. Psychol. Rev. 11(1), 87–104 (2007). https://doi.org/10.1177/1088868306294789. ISSN 1088-8683. Official journal of the Society for Personality and Social Psychology, Inc. www.ncbi.nlm.nih.gov/pubmed/18453457

  22. Vespignani, A.: Modelling dynamical processes in complex sociotechnical systems. Nat. Phys. 8(1), 32–39 (2012). https://doi.org/10.1038/nphys2160. ISSN 1745-2473

    Article  MathSciNet  Google Scholar 

  23. Wagner, C.: Consensus through respect: a model of rational group decision-making. Philos. Stud. 34(4), 335–349 (1978). https://doi.org/10.1007/BF00364701. ISSN 0031-8116

    Article  MathSciNet  Google Scholar 

  24. Waldrop, M.M., Gleick, J.: Complexity: The Emerging Science at the Edge of Order and Chaos. Viking Info, London (1992)

    Google Scholar 

  25. Wickham, H.: Tidyverse: easily install and load the ‘Tidyverse’. R package version 1.3.0 (2019). https://CRAN.R-project.org/package=tidyverse

  26. Wickham, H., Seidel, D.: Scales: scale functions for visualization. R package version 1.1.0 (2019). https://CRAN.R-project.org/package=scales

  27. Wilensky, U.: Center for connected learning and computer based modeling. Northwestern University (1999). http://ccl.northwestern.edu/netlogo

  28. Xie, Y.: knitr: a general-purpose package for dynamic report generation in R. R package version 1.28 (2020). https://CRAN.Rproject.org/package=knitr

Download references

Acknowledgements

This research was supported by the Digital Society research program funded by the Ministry of Culture and Science of the German State of North Rhine-Westphalia.

We used the following packages to create this document: knitr [28], tidyverse [25], rmdformats [1], scales [26], psych [19], rmdtemplates [5].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Burbach .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Burbach, L. et al. (2020). Netlogo vs. Julia: Evaluating Different Options for the Simulation of Opinion Dynamics. In: Duffy, V. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Human Communication, Organization and Work. HCII 2020. Lecture Notes in Computer Science(), vol 12199. Springer, Cham. https://doi.org/10.1007/978-3-030-49907-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49907-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49906-8

  • Online ISBN: 978-3-030-49907-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics