Skip to main content

Materials and Methods

  • Chapter
  • First Online:
  • 233 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

In this compendium of publications, different methods and databases were used. To avoid redundancy, a brief summary of the methods followed and the databases used is provided in this chapter. However, a detailed explanation of them is described in the papers of the compendium of publications (see the “Introduction” chapter and the bibliography for further details).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    The simulations showed that the MSE is a concave function with a minimum that varies for each subject. We checked that the minimum was always achieved before 5000 repetitions. Of note, the number of iterations required for reaching the minimum MSE is different for each subject.

References

  1. Gomez-Pilar J, Poza J, Bachiller A, Gómez C, Molina V, Hornero R (2015) Neural network reorganization analysis during an auditory oddball task in schizophrenia using wavelet entropy. Entropy 17(8):5241–5256

    Article  Google Scholar 

  2. Gomez-Pilar J, Lubeiro A, Poza J, Hornero R, Ayuso M, Valcárcel C, Haidar K, Blanco JA, Molina V (2017) Functional EEG network analysis in schizophrenia: evidence of larger segregation and deficit of modulation. Prog Neuro-Psychopharmacol Biol Psychiatry 76(March):116–123

    Article  Google Scholar 

  3. Gomez-Pilar J, Poza J, Gómez C, Northoff G, Lubeiro A, Benjamín B Cea-Cañas, Molina V, Roberto H (2018) Altered predictive capability of the brain network EEG model in schizophrenia during cognition. Schizophr Res 201:120–129

    Google Scholar 

  4. Gomez-Pilar J, de Luis-García R, Lubeiro A, de Uribe N, Poza J, Núñez P, Ayuso M, Hornero R, Molina V (2018) Deficits of entropy modulation in schizophrenia are predicted by functional connectivity strength in the theta band and structural clustering. NeuroImage: Clin 18(February):382–389

    Google Scholar 

  5. Gomez-Pilar J, Poza J, Bachiller A, Gómez C, Núñez P, Lubeiro A, Molina V, Hornero R (2018) Quantification of graph complexity based on the edge weight distribution balance: application to brain networks. Int J Neural Syst 28(1):1750032

    Google Scholar 

  6. Gomez-Pilar J, de Luis-García R, Lubeiro A, de la Red H, Poza J, Núñez P, Hornero R, Molina V (2018) Relations between structural and eeg-based graph metrics in healthy controls and schizophrenia patients. Hum Brain Map 39(8):3152–3165

    Google Scholar 

  7. Bachiller A, Poza J, Gómez C, Molina V, Suazo V, Hornero R (2015) A comparative study of event-related coupling patterns during an auditory oddball task in schizophrenia. J Neural Eng 12(1):016007

    Article  Google Scholar 

  8. Núñez P, Poza J, Bachiller A, Gomez-Pilar J, Lubeiro A, Molina V, Hornero R (2017) Exploring non-stationarity patterns in schizophrenia: neural reorganization abnormalities in the alpha band. J Neural Eng 14(4):046001

    Article  Google Scholar 

  9. Roach BJ, Mathalon DH (2008) Event-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34(5):907–926

    Article  Google Scholar 

  10. Mallat S (1999) A wavelet tour of signal processing. Academic, New York

    Google Scholar 

  11. Nunez PL, Srinivasan R, Westdorp AF, Wijesinghe RS, Tucker DM, Silberstein RB, Cadusch PJ (1997) EEG coherency I: statistics, reference electrode, volume conduction, Laplacians, cortical imaging, and interpretation at multiple scales. Electroencephalogr Clin Neurophysiol 103(5):499–515

    Article  Google Scholar 

  12. Yener GG, Başar E (2013) Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci 15(3):291–300

    Google Scholar 

  13. Lachaux JP, Rodriguez E, Martinerie J, Varela FJ (1999) Measuring phase synchrony in brain signals. Hum Brain Map 8(4):194–208

    Article  Google Scholar 

  14. Spencer KM, Nestor PG, Niznikiewicz MA, Salisbury DF, Shenton ME, McCarley RW (2003) Abnormal neural synchrony in schizophrenia. J Neurosci: Official J Soc Neurosci 23(19):7407–7411

    Article  Google Scholar 

  15. Bob P, Palus M, Susta M, Glaslova K (2008) EEG phase synchronization in patients with paranoid schizophrenia. Neurosci Lett 447:73–77

    Article  Google Scholar 

  16. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  Google Scholar 

  17. Ansmann G, Lehnertz K (2012) Surrogate-assisted analysis of weighted functional brain networks. J Neurosci Methods 208(2):165–172

    Article  Google Scholar 

  18. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, Walsum Van Cappellen Van AM, Montez T, Verbunt JPA, De Munck JC, Van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(2008):213–224

    Google Scholar 

  19. Nakamura T, Hillary FG, Biswal BB (2009) Resting network plasticity following brain injury. PLoS ONE 4(12)

    Google Scholar 

  20. de Haan W, Pijnenburg YAL, Strijers RLM, van der Made Y, van der Flier WM, Scheltens P, Stam CJ (2009) Functional neural network analysis in frontotemporal dementia and Alzheimer’s disease using EEG and graph theory. BMC Neurosci 10:101

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Gomez-Pilar .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomez-Pilar, J. (2021). Materials and Methods. In: Characterization of Neural Activity Using Complex Network Theory . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-49900-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49900-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49899-3

  • Online ISBN: 978-3-030-49900-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics