Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 232 Accesses

Abstract

The current Doctoral Thesis focuses on characterizing brain network dynamics by means of Complex Network Theory to elucidate neural substrates in schizophrenia disorder. Electroencephalographic (EEG) signals, acquired during a cognitive task, were used to obtain connectivity matrices that describe the functional brain network. Graph measures were computed from these matrices using coherence and phase-based measures. These investigations have led to results which have been published, or accepted for publication, in journals indexed in the Journal Citation Reports from Thomson Reuters Web of Science(JCR-WOS). Specifically, up to five papers were published between July 2015 and August 2018. Additionally, one more paper was accepted for publication (April 2018). This scientific productivity has allowed writing this work as a compendium of publications. The thematic consistency of the papers included in the Thesis is justified in this introductory chapter (Sect. 1.1). The general context of Biomedical Engineering and neural signal processing is briefly described in Sect. 1.2. Section 1.3 is devoted to schizophrenia disorder. Section 1.4 is oriented to explain physiological underpinnings of the EEG recordings. In Sect. 1.5, the basis of neural oscillations and their generation is explained. Section 1.6 is focused on Event-Related Potential (ERP) and its usefulness in research. Finally, Sect. 1.7 provides the basis for understanding the current tendency to model brain interactions as a graph. The latter, indeed, motivates the research problem and, subsequently, the research questions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Only one of these symptoms is required if delusions are bizarre or hallucinations consist of a voice keeping up a running commentary on the person’s behavior or thoughts, or two or more voices conversing with each other [16].

References

  1. Friston KJ (1998) The disconnection hypothesis. Schizophr Res 30:115–125

    Article  Google Scholar 

  2. Whalley HC (2005) Functional disconnectivity in subjects at high genetic risk of schizophrenia. Brain 128(9):2097–2108

    Article  Google Scholar 

  3. Gomez-Pilar J, Poza J, Bachiller A, Gómez C, Molina V, Hornero R (2015) Neural network reorganization analysis during an auditory oddball task in schizophrenia using wavelet entropy. Entropy 17(8):5241–5256

    Article  Google Scholar 

  4. Gomez-Pilar J, Lubeiro A, Poza J, Hornero R, Ayuso M, Valcárcel C, Haidar K, Blanco JA, Molina V (2017) Functional EEG network analysis in schizophrenia: Evidence of larger segregation and deficit of modulation. Prog Neuropsychopharmacol Biol Psychiatry 76(March):116–123

    Article  Google Scholar 

  5. Gomez-Pilar J, de Luis-García R, Lubeiro A, de la Red H, Poza J, Núñez P, Hornero R, Molina V (2018) Relations between structural and eeg-based graph metrics in healthy controls and schizophrenia patients. Hum Brain Map 39(8):3152–3165

    Google Scholar 

  6. Gomez-Pilar J, de Luis-García R, Lubeiro A, de Uribe N, Poza J, Núñez P, Ayuso M, Hornero R, Molina V (2018) Deficits of entropy modulation in schizophrenia are predicted by functional connectivity strength in the theta band and structural clustering. NeuroImage: Clin 18(February):382–389

    Google Scholar 

  7. Gomez-Pilar J, Poza J, Bachiller A, Gómez C, Núñez P, Lubeiro A, Molina V, Hornero R (2018c) Quantification of graph complexity based on the edge weight distribution balance: application to brain networks. Int J Neural Syst 28(1):1750032

    Article  Google Scholar 

  8. Rubinov M, Knock S, Stam CJ, Micheloyannis S, Harris A, Williams LM, Breakspear M (2009) Small-world properties of nonlinear brain activity in schizophrenia. Hum Brain Map 30:403–416

    Article  Google Scholar 

  9. Stam CJ, de Haan W, Daffertshofer A, Jones BF, Manshanden I, Walsum Van Cappellen Van AM, Montez T, Verbunt JPA, De Munck JC, Van Dijk BW, Berendse HW, Scheltens P (2009) Graph theoretical analysis of magnetoencephalographic functional connectivity in Alzheimer’s disease. Brain 132(2008):213–224

    Google Scholar 

  10. Uhlhaas PJ, Singer W (2006) Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology. Neuron 52:155–168

    Article  Google Scholar 

  11. Dimitriadis SI, Salis CI (2017) Mining time-resolved functional brain graphs to an EEG-based chronnectomic brain aged index (CBAI). Front Hum Neurosci 11(August)

    Google Scholar 

  12. Nomi JS, Vij SG, Dajani DR, Steimke R, Damaraju E, Rachakonda S, Calhoun VD, Uddin LQ (2017) Chronnectomic patterns and neural flexibility underlie executive function. NeuroImage 147(August 2016):861–871

    Google Scholar 

  13. Gomez-Pilar J, Poza J, Gómez C, Northoff G, Lubeiro A, Benjamín B Cea-Cañas, Molina V, Roberto H (2018) Altered predictive capability of the brain network EEG model in schizophrenia during cognition. Schizophr Res 201:120–129

    Google Scholar 

  14. Bronzino J (1999) Biomedical engineering handbook, 2nd edn. CRC press, Bocca Raton

    Google Scholar 

  15. Sporns O, Tononi G, Kötter R (2005) The human connection of the human brain. PLoS Comput Biol 1(4):0245–0251

    Article  Google Scholar 

  16. American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5: DSM-5 edn. American Psychiatric Publishing, Arlington

    Book  Google Scholar 

  17. Lubeiro A, Rueda C, Hernández JA, Sanz J, Sarramea F, Molina V (2016) Identification of two clusters within schizophrenia with different structural, functional and clinical characteristics. Prog Neuro-Psychopharmacol Biol Psychiatry 64:79–86

    Article  Google Scholar 

  18. Barch DM, Sheffield JM (2014) Cognitive impairments in psychotic disorders: Common mechanisms and measurement. World Psychiatry 13(October):224–232

    Article  Google Scholar 

  19. Bhugra D (2005) The global prevalence of schizophrenia. PLoS Med 2(5):e151

    Article  Google Scholar 

  20. Lewis DA, Lieberman JA (2000) Catching up on schizophrenia. Neuron 28(2):325–334

    Article  Google Scholar 

  21. Simeone JC, Ward AJ, Rotella P, Collins J, Windisch R (2015) An evaluation of variation in published estimates of schizophrenia prevalence from 1990–2013: a systematic literature review. BMC Psychiatry 15(1):193

    Article  Google Scholar 

  22. Laursen TM, Nordentoft M, Mortensen PB (2014) Excess early mortality in schizophrenia. Ann Rev Clin Psychol 10(1):425–448

    Article  Google Scholar 

  23. Harrison PJ, Owen MJ (2003) Genes for schizophrenia? Recent findings and their pathophysiological implications. The Lancet 361(9355):417–419

    Article  Google Scholar 

  24. Brown AS (2008) The risk for schizophrenia from childhood and adult infections. Am J Psychiatry 165(1):7–10

    Article  Google Scholar 

  25. Welham J, Isohanni M, Jones P, McGrath J (2009) The antecedents of schizophrenia: a review of birth cohort studies. Schizophr Bull 35(3):603–623

    Article  Google Scholar 

  26. Swartz MS, Wagner HR, Swanson JW, Stroup TS, McEvoy JP, Canive JM, Miller DD, Reimherr F, McGee M, Khan A, Van Dorn R, Rosenheck RA, Lieberman JA (2006) Substance use in persons with schizophrenia. J Nerv Mental Dis 194(3):164–172

    Article  Google Scholar 

  27. Orellana G, Slachevsky A (2013) Executive functioning in schizophrenia. Front Psychiatry 4:35

    Article  Google Scholar 

  28. Javitt DC, Sweet RA (2015) Auditory dysfunction in schizophrenia: integrating clinical and basic features. Nat Rev Neurosci 16(9):535–550

    Article  Google Scholar 

  29. Stone JM, Morrison PD, Pilowsky LS (2007) Glutamate and dopamine dysregulation in schizophrenia-a synthesis and selective review. J Psychopharmacol 21(4):440–452

    Article  Google Scholar 

  30. Kapur S (2003) Psychosis as a state of aberrant salience: a framework linking biology, phenomenology, and pharmacology in schizophrenia. Am J Psychiatry 160:13–23

    Article  Google Scholar 

  31. Carlsson ML, Carlsson A, Nilsson M (2004) Schizophrenia: from dopamine to glutamate and back. Curr Med Chem 11(3):267–277

    Article  Google Scholar 

  32. Klosterkotter J, Schultze-Lutter F (1998) Diagnosing schizophrenia in the prodromal phase. Eur Psychiatry 13:144s

    Article  Google Scholar 

  33. Yung AR, McGorry PO (1996) The prodromal phase of first-episode psychosis: Past and current conceptualizations. Schizophr Bull 22(2):353–370

    Article  Google Scholar 

  34. Buckley P (2008) Update on the etiology and treatment of schizophrenia and bipolar disorder. CNS Spect: Int J Neuropsychiatric Med 13(1–12):11p

    Google Scholar 

  35. Edwards SJ, Smith CJ (2009) Tolerability of atypical antipsychotics in the treatment of adults with schizophrenia or bipolar disorder: a mixed treatment comparison of randomized controlled trials. Clin Ther 31:1345–1359

    Article  Google Scholar 

  36. Patterson TL, Leeuwenkamp OR (2008) Adjunctive psychosocial therapies for the treatment of schizophrenia. Schizophr Res 100(1):108–119

    Article  Google Scholar 

  37. Kapur S, Remington G (2001) Atypical antipsychotics: new directions and new challenges in the treatment of schizophrenia. Ann Rev Med 52:503–517

    Article  Google Scholar 

  38. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Google Scholar 

  39. Chatrian GE, Lettich E, Nelson PL (1985) Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. Am J EEG Technol 25(2):83–92

    Article  Google Scholar 

  40. Cohen MX (2014) Analyzing neural time series data: theory and practice. MIT press

    Google Scholar 

  41. Wang X-J (2010) Neurophysiological and computational principles of cortical rhythms in cognition. Physiol Rev 90(3):1195–1268

    Article  Google Scholar 

  42. Nunez PL, Srinivasan R (2006) Electric fields of the brain: the neurophysics of EEG. Oxford University Press, Oxford

    Google Scholar 

  43. Buckner RL, Andrews-Hanna JR, Schacter DL (2008) The brain’s default network. Ann N Y Acad Sci 1124(1):1–38

    Article  Google Scholar 

  44. Arieli A, Sterkin A, Grinvald A, Aertsen A (1996) Dynamics of ongoing activity: explanation of the large variability in evoked cortical responses. Science 273(5283):1868–1871

    Article  Google Scholar 

  45. Huang Z, Zhang J, Longtin A, Dumont G, Duncan NW, Pokorny J, Qin P, Dai R, Ferri F, Weng X et al (2017) Is there a nonadditive interaction between spontaneous and evoked activity? phase-dependence and its relation to the temporal structure of scale-free brain activity. Cereb Cortex 27(2):1037–1059

    Google Scholar 

  46. Jensen O, Mazaheri A (2010) Shaping functional architecture by oscillatory alpha activity: gating by inhibition. Front Hum Neurosci 4:186

    Article  Google Scholar 

  47. Fuchs EC, Zivkovic AR, Cunningham MO, Middleton S, LeBeau FE, Bannerman DM, Rozov A, Whittington MA, Traub RD, Rawlins JNP, Monyer H (2007) Recruitment of parvalbumin-positive interneurons determines hippocampal function and associated behavior. Neuron 53(4):591–604

    Article  Google Scholar 

  48. Lopes da Silva F (2013) EEG and MEG: relevance to neuroscience. Neuron 80(5):1112–1128

    Article  Google Scholar 

  49. Niedermeyer E, da Silva FL (2005) Electroencephalography: basic principles, clinical applications, and related fields. Lippincott Williams & Wilkins

    Google Scholar 

  50. Roach BJ, Mathalon DH (2008) Event-related EEG Time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophrenia. Schizophr Bull 34(5):907–926

    Article  Google Scholar 

  51. Polich J (2007) Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol 118:2128–2148

    Article  Google Scholar 

  52. Jeon Y-W, Polich J (2003) Meta-analysis of p300 and schizophrenia: patients, paradigms, and practical implications. Psychophysiology 40(5):684–701

    Article  Google Scholar 

  53. Mathalon DH, Ford JM, Pfefferbaum A (2000) Trait and state aspects of p300 amplitude reduction in schizophrenia: a retrospective longitudinal study. Biol Psychiatry 47(5):434–449

    Article  Google Scholar 

  54. O’Donnell BF, Vohs JL, Hetrick WP, Carroll CA, Shekhar A (2004) Auditory event-related potential abnormalities in bipolar disorder and schizophrenia. Int J Psychophysiol 53(1):45–55

    Article  Google Scholar 

  55. Makeig S, Debener S, Onton J, Delorme A (2004) Mining event-related brain dynamics. Trends Cognit Sci 8(5):204–210

    Article  Google Scholar 

  56. Uhlhaas PJ, Singer W (2010) Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci 11:100–113

    Article  Google Scholar 

  57. Von Stein A, Sarnthein J (2000) Different frequencies for different scales of cortical integration: from local gamma to long range alpha/theta synchronization. Int J Psychophysiol 38:301–313

    Article  Google Scholar 

  58. Womelsdorf T, Schoffelen J-M, Oostenveld R, Singer W, Desimone R, Engel AK, Fries P (2007) Modulation of neuronal interactions through neuronal synchronization. Science 316:1609–1612

    Article  Google Scholar 

  59. Bullmore E, Sporns O (2009) Complex brain networks: graph theoretical analysis of structural and functional systems. Nat Rev Neurosci 10(3):186–198

    Article  Google Scholar 

  60. Watts D, Strogatz S (1998) Collective dynamics of small-world networks. Nature 393(June):440–442

    Article  MATH  Google Scholar 

  61. Scannell JW, Burns GA, Hilgetag CC, O’Neil MA, Young MP (1991) The connectional organization of the cortico-thalamic system of the cat. Cereb Cortex 9(3):277–99

    Article  Google Scholar 

  62. Felleman DJ, Van Essen DC (1991) Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1(1):1–47

    Article  Google Scholar 

  63. Sporns O (2013) Structure and function of complex brain networks. Dial Clin Neurosci 15(3):247–262

    Article  Google Scholar 

  64. Ramón y Cajal S (1995) Cajal’s histology of the nervous system of man and vertebrates (History of Neuroscience) OUP USA

    Google Scholar 

  65. Barabási A, Albert R (1999) Emergence of scaling in random networks. Science 286(5439):509–512

    Article  MathSciNet  MATH  Google Scholar 

  66. Erdös P, Rényi, a. (1959) On random graphs. Publicationes Mathematicae 6:290–297

    Google Scholar 

  67. van den Heuvel MP, Mandl RCW, Stam CJ, Kahn RS, Hulshoff Pol HE (2010) Aberrant frontal and temporal complex network structure in schizophrenia: a graph theoretical analysis. J Neurosci: Official J Soc Neurosci 30(47):15915–15926

    Google Scholar 

  68. Eguíluz VM, Chialvo DR, Cecchi GA, Baliki M, Apkarian AV (2005) Scale-Free brain functional networks. Phys Rev Lett 94(1):018102

    Article  Google Scholar 

  69. Bullmore ET, Bassett DS (2011) Brain graphs: graphical models of the human brain connectome. Ann Rev Clin Psychol 7(1):113–140

    Article  Google Scholar 

  70. Rubinov M, Sporns O (2010) Complex network measures of brain connectivity: uses and interpretations. NeuroImage 52(3):1059–1069

    Article  Google Scholar 

  71. Ansmann G, Lehnertz K (2012) Surrogate-assisted analysis of weighted functional brain networks. J Neurosci Methods 208(2):165–172

    Article  Google Scholar 

  72. Petersen SE, Sporns O (2015) Brain networks and cognitive architectures. Neuron 88(1):207–219

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Gomez-Pilar .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gomez-Pilar, J. (2021). Introduction. In: Characterization of Neural Activity Using Complex Network Theory . Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-49900-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49900-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49899-3

  • Online ISBN: 978-3-030-49900-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics