Skip to main content

Towards a Term Clustering Framework for Modular Ontology Learning

  • Conference paper
  • First Online:
Book cover Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018)

Abstract

This paper aims to analyze and adopt the term clustering method for building a modular ontology according to its core ontology. The acquisition of semantic knowledge focuses on noun phrase appearing with the same syntactic roles in relation to a verb or its preposition combination in a sentence. The construction of this co-occurrence matrix from context helps to build feature space of noun phrases, which is then transformed to several encoding representations including feature selection and dimensionality reduction. In addition, word embedding techniques are also presented as feature representation. These representations are clustered respectively with K-Means, K-Medoids, Affinity Propagation, DBscan and co-clustering algorithms. The feature representation and clustering methods constitute the major sections of term clustering frameworks. Due to the randomness of clustering approaches, iteration efforts are adopted to find the optimal parameter and provide convinced value for evaluation. The DBscan and affinity propagation show their outstanding effectiveness for term clustering and NMF encoding technique and word embedding representation are salient by its promising facilities in feature compression.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aggarwal, C.C., Zhai, C.: A survey of text clustering algorithms. In: Aggarwal, C., Zhai, C. (eds.) Mining Text Data. Springer, Boston (2012). https://doi.org/10.1007/978-1-4614-3223-4_4

    Chapter  Google Scholar 

  2. Arnold, T.: A tidy data model for natural language processing using cleanNLP. R J. 9(2), 1–20 (2017). https://journal.r-project.org/archive/2017/RJ-2017-035/index.html

  3. Buitelaar, P., Cimiano, P., Magnini, B.: Ontology learning from text: an overview. In: Buitelaar, P., Cimiano, P., Magnini, B. (eds.) Ontology Learning from Text: Methods, Evaluation and Applications, vol. 123, pp. 3–12. IOS press, Amsterdam (2005)

    Google Scholar 

  4. Buitelaar, P., Olejnik, D., Sintek, M.: A protégé plug-in for ontology extraction from text based on linguistic analysis. In: Bussler, C.J., Davies, J., Fensel, D., Studer, R. (eds.) ESWS 2004. LNCS, vol. 3053, pp. 31–44. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-25956-5_3

    Chapter  Google Scholar 

  5. Burita, L., Gardavsky, P., Vejlupek, T.: K-gate ontology driven knowledge based system for decision support. J. Syst. Integr. 3(1), 19–31 (2012)

    Google Scholar 

  6. Camacho-Collados, J., et al.: SemEval-2018 Task 9: hypernym discovery. In: Proceedings of the 12th International Workshop on Semantic Evaluation, SemEval-2018, New Orleans, LA, United States. Association for Computational Linguistics (2018)

    Google Scholar 

  7. Chulyadyo, R., Harzallah, M., Berio, G.: Core ontology based approach for treating the flatness of automatically built ontology. In: KEOD, Portugal, pp. 316–323, September 2013

    Google Scholar 

  8. Church, K.W., Hanks, P.: Word association norms, mutual information, and lexicography. Comput. Linguist. 16(1), 22–29 (1990)

    Google Scholar 

  9. Cimiano P., de Mantaras, R.L., Saitia, L.: Comparing conceptual, divisive and agglomerative clustering for learning taxonomies from text. In: 16th European Conference on Artificial Intelligence Conference Proceedings, vol. 110, p. 435 (2004)

    Google Scholar 

  10. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Stat. Soc.: Ser. B (Methodol.) 39(1), 1–22 (1977)

    MathSciNet  MATH  Google Scholar 

  11. Despress, S., Szulman, S.: Merging of legal micro-ontologies from Europen directives. Artif. Intell. Law 15(2), 187–200 (2007). https://doi.org/10.1007/s10506-007-9028-2

    Article  Google Scholar 

  12. Dunn, J.C.: Well-separated clusters and optimal fuzzy partitions. J. Cybern. 4(1), 95–104 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  13. El Ghosh, M., Naja, H., Abdulrab, H., Khalil, M.: Application of ontology modularization for building a criminal domain ontology. In: Pagallo, U., Palmirani, M., Casanovas, P., Sartor, G., Villata, S. (eds.) AICOL 2015-2017. LNCS (LNAI), vol. 10791, pp. 394–409. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00178-0_27

    Chapter  Google Scholar 

  14. Esposito, F., Fanizzi, N., d’Amato, C.: Partitional conceptual clustering of web resources annotated with ontology languages. In: Berendt, B., et al. (eds.) Knowledge Discovery Enhanced with Semantic and Social Information. Studies in Computational Intelligence, vol. 220. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-01891-6_4

    Chapter  Google Scholar 

  15. Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. KDD 96, 226–231 (1996)

    Google Scholar 

  16. Faure, D., Nédellec, C., Rouveirol, C.: Acquisition of semantic knowledge using machine learning methods: The system “asium”. Universite Paris Sud, Technical report (1998)

    Google Scholar 

  17. Fernández-López, M., Gómez-Pérez, A., Juristo, N.: Methontology: From ontological art towards ontological engineering. In: AAAI (1997)

    Google Scholar 

  18. Frey, B.J., Dueck, D.: Clustering by passing messages between data points. Science 315(5814), 972–976 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Gábor, K., Zargayouna, H., Tellier, I., Buscaldi, D., Charnois, T.: Unsupervised relation extraction in specialized corpora using sequence mining. In: Boström, H., Knobbe, A., Soares, C., Papapetrou, P. (eds.) IDA 2016. LNCS, vol. 9897, pp. 237–248. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46349-0_21

    Chapter  Google Scholar 

  20. Gamallo, P., Bordag, S.: Is singular value decomposition useful for word similarity extraction? Lang. Resour. Eval. 45(2), 95–119 (2011). https://doi.org/10.1007/s10579-010-9129-5

    Article  Google Scholar 

  21. Gangemi, A., Catenacci, C., Battaglia, M.: Inflammation ontology design pattern: an exercise in building a core biomedical ontology with descriptions and situations. Stud. Health Technol. Inform. 102, 64–80 (2004)

    Google Scholar 

  22. Gangemi, A., Catenacci, C., Ciaramita, M., Lehmann, J.: Modelling ontology evaluation and validation. In: Sure, Y., Domingue, J. (eds.) ESWC 2006. LNCS, vol. 4011, pp. 140–154. Springer, Heidelberg (2006). https://doi.org/10.1007/11762256_13

    Chapter  Google Scholar 

  23. Govaert, G., Nadif, M.: Latent block model for contingency table. Commun. Stat. Theory Methods 39(3), 416–425 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grau, B.C., Horrocks, I., Kazakov, Y., Sattler, U.: A logical framework for modularity of ontologies. IJCAI 114, 298–303 (2007)

    Google Scholar 

  25. Gruber, T.R.: A translation approach to portable ontology specifications. Knowl. Acquis. 5(2), 199–220 (1993)

    Article  Google Scholar 

  26. Hao, J., Zhang, C., Wang, H.: Using keywords clustering to construct ontological hierarchies. In: Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology-Volume 03, pp. 247–250. IEEE Computer Society (2009)

    Google Scholar 

  27. Harris, Z.: Distributional structure. Word 10(23), 146–162 (1954)

    Article  Google Scholar 

  28. Hartigan, J.A., Wong, M.A.: Algorithm as 136: a k-means clustering algorithm. J. Roy. Stat. Soc.: Ser. C (Appl. Stat.) 28(1), 100–108 (1979)

    MATH  Google Scholar 

  29. Hois, J., Bhatt, M., Kutz, O.: Modular ontologies for architectural design. In: FOMI, pp. 66–77 (2009)

    Google Scholar 

  30. Hubert, L., Arabie, P.: Comparing partitions. J. Classif. 2(1), 193–218 (1985). https://doi.org/10.1007/BF01908075

    Article  MATH  Google Scholar 

  31. Jiang, X., Tan, A.H.: Mining ontological knowledge from domain-specific text documents. In: Fifth IEEE International Conference on Data Mining, pp. 665–668. IEEE (2005)

    Google Scholar 

  32. Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster Analysis, vol. 344. Wiley, Hoboken (2009)

    MATH  Google Scholar 

  33. Kutz, O., Hois, J.: Modularity in ontologies. Appl. Ontol. 7, 109–112 (2012). https://doi.org/10.3233/AO-2012-0109

    Article  Google Scholar 

  34. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788 (1999)

    Article  MATH  Google Scholar 

  35. Manning, C.D., Surdeanu, M., Bauer, J., Finkel, J., Bethard, S.J., McClosky, D.: The Stanford CoreNLP natural language processing toolkit. In: Association for Computational Linguistics (ACL) System Demonstrations, pp. 55–60 (2014)

    Google Scholar 

  36. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  37. Nancy, P., Ramani, R.G.: Discovery of patterns and evaluation of clustering algorithms in socialnetwork data (face book 100 universities) through data mining techniques and methods. Int. J. Data Min. Knowl. Manage. Process 2(5), 71 (2012)

    Article  Google Scholar 

  38. Oberle, D., Lamparter, S., Grimm, S., Vrandečić, D., Staab, S., Gangemi, A.: Towards ontologies for formalizing modularization and communication in large software systems. Appl. Ontol. 1(2), 163–202 (2006)

    Google Scholar 

  39. Opdahl, A., Berio, G., Harzallah, M., Matulevičius, R.: Ontology for enterprise and information systems modelling. Appl. Ontol. 7, 49–92 (2011)

    Article  Google Scholar 

  40. O’Connor, L., Feizi, S.: Biclustering using message passing. In: Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 3617–3625. Curran Associates, Inc. (2014). http://papers.nips.cc/paper/5603-biclustering-using-message-passing.pdf

  41. Pal, N.R., Biswas, J.: Cluster validation using graph theoretic concepts. Pattern Recogn. 30(6), 847–857 (1997)

    Article  Google Scholar 

  42. Rand, W.M.: Objective criteria for the evaluation of clustering methods. J. Am. Stat. Assoc. 66(336), 846–850 (1971)

    Article  Google Scholar 

  43. Rani, M., Dhar, A.K., Vyas, O.: Semi-automatic terminology ontology learning based on topic modeling. Eng. Appl. Artif. Intell. 63, 108–125 (2017)

    Article  Google Scholar 

  44. Rdrr.io: Silhouette: Compute or extract silhouette information from clustering (2019). https://rdrr.io/cran/cluster/man/silhouette.html. Accessed 10 May 2019

  45. Rios-Alvarado, A.B., Lopez-Arevalo, I., Sosa-Sosa, V.J.: Learning concept hierarchies from textual resources for ontologies construction. Expert Syst. Appl. 40(15), 5907–5915 (2013)

    Article  Google Scholar 

  46. Scherpa, A., Saathoffa, C., Franza, T., Staaba, S.: Designing core ontologies. Appl. Ontol. 3, 1–3 (2009)

    Google Scholar 

  47. Song, Q., Liu, J., Wang, X., Wang, J.: A novel automatic ontology construction method based on web data. In: 2014 Tenth International Conference on Intelligent Information Hiding and Multimedia Signal Processing, pp. 762–765. IEEE (2014)

    Google Scholar 

  48. spaCy: Spacy:industrial-strength natural language processing (NLP) with python and cython, explosion AI (2019). https://github.com/explosion/spaCy. Accessed 10 May 2019

  49. Wagner, S., Wagner, D.: Comparing clusterings: an overview. Universität Karlsruhe, Fakultät für Informatik Karlsruhe (2007)

    Google Scholar 

  50. Wang, W., Barnaghi, P.M., Bargiela, A.: Learning SKOS relations for terminological ontologies from text. In: Wong, W., Liu, W., Bennamoun, M. (eds.) Ontology Learning and Knowledge Discovery Using the Web: Challenges and Recent Advances, pp. 129–152. IGI Global, Hershey (2011)

    Chapter  Google Scholar 

  51. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  52. XU, Z., Harzallah, M., Guillet, F.: Comparing of term clustering frameworks for modular ontology learning. In: Proceedings of the 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management - Volume 2: KEOD, Seville, Spain, pp. 128–135. SCITEPRESS - Science and Technology Publications, September 2018

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ziwei Xu , Mounira Harzallah , Fabrice Guillet or Ryutaro Ichise .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Harzallah, M., Guillet, F., Ichise, R. (2020). Towards a Term Clustering Framework for Modular Ontology Learning. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2018. Communications in Computer and Information Science, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-49559-6_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49559-6_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49558-9

  • Online ISBN: 978-3-030-49559-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics