Skip to main content

HCC-Learn Framework for Hybrid Learning in Recommender Systems

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018)

Abstract

In e-business, recommender systems have been instrumental in guiding users through their online experiences. However, these systems are often limited by the lack of labels data and data sparsity. Increasingly, data-mining techniques are utilized to address this issue. In most research, recommendations to be made are achieved via supervised learning that typically employs the k-nearest neighbor learner. However, supervised learning relies on labeled data, which may not be available at the time of learning. Data sparsity, which refers to situations where the number of items that have been recommended represents only a small subset of all available items, further affects model performance. One suggested solution is to apply cluster analysis as a preprocessing step and thus guide the learning process from natural grouping, typically using similar customer profiles, to improve predictive accuracy. In this paper, we study the benefits of applying cluster analysis as a preprocessing step prior to constructing classification models. Our HCC-Learn framework combines content-based analysis in the preprocessing stage and collaborative filtering in the final prediction stage. Our results show the value of our HCC-Learn framework applied to real-world data sets, especially when combining soft clustering and ensembles based on feature subspaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://open.canada.ca/data/en/dataset/98f1a129-f628-4ce4-b24d-6f16bf24dd64.

References

  1. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Adv. Artif. Intell. (2009). Article no. 4

    Google Scholar 

  2. Wei, K., Huang, J., Fu, S.: A survey of e-commerce recommender systems. In: 2007 International Conference on Service Systems and Service Management, pp. 1–5. IEEE (2007)

    Google Scholar 

  3. Minkov, E., Charrow, B., Ledlie, J., Teller, S., Jaakkola, T.: Collaborative future event recommendation. In: Proceedings of the 19th ACM International Conference on Information and Knowledge Management, pp. 819–828. ACM (2010)

    Google Scholar 

  4. Acosta, O.C., Behar, P.A., Reategui, E.B.: Content recommendation in an inquiry-based learning environment. In: Frontiers in Education Conference (FIE), pp. 1–6. IEEE (2014)

    Google Scholar 

  5. Liao, C.-L., Lee, S.-J.: A clustering based approach to improving the efficiency of collaborative filtering recommendation. Electron. Commer. Res. Appl. 18, 1–9 (2016)

    Article  Google Scholar 

  6. Saha, T., Rangwala, H., Domeniconi, C.: Predicting preference tags to improve item recommendation. In: Proceedings of the 2015 SIAM International Conference on Data Mining, pp. 864–872. SIAM (2015)

    Google Scholar 

  7. Elahi, M., Ricci, F., Rubens, N.: Active learning strategies for rating elicitation in collaborative filtering: a system-wide perspective. ACM Trans. Intell. Syst. Technol. (TIST) 5(1), 13 (2013)

    Google Scholar 

  8. Witten, I.H., Frank, E., Hall, M.A., Pal, C.J.: Data Mining: Practical Machine Learning Tools and Techniques. Morgan Kaufmann, Burlington (2016)

    Google Scholar 

  9. Panov, P., Džeroski, S.: Combining bagging and random subspaces to create better ensembles. In: RB, M., Shawe-Taylor, J., Lavrač, N. (eds.) IDA 2007. LNCS, vol. 4723, pp. 118–129. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74825-0_11

    Chapter  Google Scholar 

  10. Ho, T.K.: The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 20(8), 832–844 (1998)

    Article  Google Scholar 

  11. Sun, S.: An improved random subspace method and its application to EEG signal classification. In: Haindl, M., Kittler, J., Roli, F. (eds.) MCS 2007. LNCS, vol. 4472, pp. 103–112. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72523-7_11

    Chapter  Google Scholar 

  12. Alabdulrahman, R., Viktor, H., Paquet, E.: Beyond k-NN: combining cluster analysis and classification for recommender systems. In: The 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018), Seville, Spain, KDIR 2018, pp. 82–91 (2018)

    Google Scholar 

  13. Kanagal, B., Ahmed, A., Pandey, S., Josifovski, V., Yuan, J., Garcia-Pueyo, L.: Supercharging recommender systems using taxonomies for learning user purchase behavior. Proc. VLDB Endow. 5(10), 956–967 (2012)

    Article  Google Scholar 

  14. Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1235–1244. ACM (2015)

    Google Scholar 

  15. Nikolaenko, V., Ioannidis, S., Weinsberg, U., Joye, M., Taft, N., Boneh, D.: Privacy-preserving matrix factorization. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer & Communications Security, pp. 801–812. ACM (2013)

    Google Scholar 

  16. Guo, G., Zhang, J., Thalmann, D.: A simple but effective method to incorporate trusted neighbors in recommender systems. In: Masthoff, J., Mobasher, B., Desmarais, M.C., Nkambou, R. (eds.) UMAP 2012. LNCS, vol. 7379, pp. 114–125. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31454-4_10

    Chapter  Google Scholar 

  17. Li, X., Cong, G., Li, X.-L., Pham, T.-A.N., Krishnaswamy, S.: Rank-GeoFM: a ranking based geographical factorization method for point of interest recommendation. In: Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 433–442. ACM (2015)

    Google Scholar 

  18. Lian, D., Zhao, C., Xie, X., Sun, G., Chen, E., Rui, Y.: GeoMF: joint geographical modeling and matrix factorization for point-of-interest recommendation. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 831–840. ACM (2014)

    Google Scholar 

  19. Guo, H., Viktor, H.L.: Learning from imbalanced data sets with boosting and data generation: the DataBoost-IM approach. ACM SIGKDD Explor. Newsl. 6(1), 30–39 (2004)

    Article  Google Scholar 

  20. Jayasree, S., Gavya, A.A.: Addressing imbalance problem in the class–a survey (2014)

    Google Scholar 

  21. Breiman, L.: Bagging predictors. Mach. Learn. 24(2), 123–140 (1996)

    MATH  Google Scholar 

  22. Giovanni, S., John, E.: Ensemble Methods in Data Mining: Improving Accuracy Through Combining Predictions. Morgan Claypool (2010). https://doi.org/10.2200/S00240ED1V01Y200912DMK002

    Article  Google Scholar 

  23. Dilon, B.: Short overview of weka. University De Strasbourg (2016). https://slideplayer.com/slide/3312931/

  24. Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. J. Comput. Syst. Sci. 55(1), 119–139 (1997)

    Article  MathSciNet  Google Scholar 

  25. Cong, Z., Zhang, X., Wang, H., Xu, H.: Human resource recommendation algorithm based on ensemble learning and Spark. J. Phys. Conf. Ser. 887, 012048 (2017)

    Article  Google Scholar 

  26. Lili, C.: Recommender algorithms based on boosting ensemble learning. Int. J. Smart Sens. Intell. Syst. 8(1), 368–386 (2015)

    Google Scholar 

  27. Pande, S.R., Sambare, S.S., Thakre, V.M.: Data clustering using data mining techniques. Int. J. Adv. Res. Comput. Commun. Eng. 1(8), 494–499 (2012)

    Google Scholar 

  28. Mishra, R., Kumar, P., Bhasker, B.: A web recommendation system considering sequential information. Decis. Support Syst. 75, 1–10 (2015)

    Article  Google Scholar 

  29. Han, J., Pei, J., Kamber, M.: Data mining: concepts and techniques (2011)

    Google Scholar 

  30. Frank, E., Hall, M.A., Witten, I.H.: The WEKA workbench. In: Data Mining: Practical Machine Learning Tools and Techniques (2016)

    Google Scholar 

  31. Vargas-Govea, B., González-Serna, G., Ponce-Medellın, R.: Effects of relevant contextual features in the performance of a restaurant recommender system. ACM RecSys 11(592), 56 (2011)

    Google Scholar 

  32. Canada, N.R.: Fuel Consumption Ratings. Open Government Canada (2018)

    Google Scholar 

  33. Alabdulrahman, R., Viktor, H., Paquet, E.: An active learning approach for ensemble-based data stream mining. In: Proceedings of the International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management, Porto, Portugal, pp. 275–282. SCITEPRESS-Science and Technology Publications, Lda (2016)

    Google Scholar 

  34. Mythili, S., Madhiya, E.: An analysis on clustering algorithms in data mining. J. IJCSMC 3(1), 334–340 (2014)

    Google Scholar 

  35. Zhang, Y., Li, T.: Dclustere: a framework for evaluating and understanding document clustering using visualization. ACM Trans. Intell. Syst. Technol. (TIST) 3(2), 24 (2012)

    MathSciNet  Google Scholar 

  36. Sridevi, M., Rao, R.R., Rao, M.V.: A survey on recommender system. Int. J. Comput. Sci. Inf. Secur. 14(5), 265 (2016)

    Google Scholar 

  37. Katarya, R., Verma, O.P.: A collaborative recommender system enhanced with particle swarm optimization technique. Multimed. Tools Appl. 75(15), 9225–9239 (2016). https://doi.org/10.1007/s11042-016-3481-4

    Article  Google Scholar 

  38. Bifet, A., Kirkby, R.: Data Stream Mining a Practical Approach (2009)

    Google Scholar 

  39. Caliński, T., Harabasz, J.: A dendrite method for cluster analysis. Commun. Stat. Theory Methods 3(1), 1–27 (1974)

    Article  MathSciNet  Google Scholar 

  40. Flach, P.: Machine Learning: The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rabaa Alabdulrahman , Herna Viktor or Eric Paquet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Alabdulrahman, R., Viktor, H., Paquet, E. (2020). HCC-Learn Framework for Hybrid Learning in Recommender Systems. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2018. Communications in Computer and Information Science, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-49559-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49559-6_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49558-9

  • Online ISBN: 978-3-030-49559-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics