Skip to main content

A Semantic Approach to Constraint-Based Reasoning in Geographical Domains

  • Conference paper
  • First Online:
Knowledge Discovery, Knowledge Engineering and Knowledge Management (IC3K 2018)

Abstract

Various models have been developed to manage geographic data but most of them integrate heterogeneous techniques to support knowledge representation and reasoning. This is far from optimal because it requires mapping data between different representation formats; moreover, as it fragments knowledge, it limits the possibility to use complete information about the problem to be solved for the execution of inferences.

In order to address this issue, we adopt a unified approach, in which we use Semantic Web techniques to manage both knowledge representation and reasoning rules with particular attention to constraint verification that is central to several geographic reasoning tasks. Our model exploits an ontological description of spatial constraints which supports the specification of their properties, facilitating the automated selection of the relevant ones to be applied to a given problem. The model supports different types of inferences, such as checking the compliance of a given geographical area to a set of constraints, or suggesting a suitable aggregation of land patches that satisfy them.

We test our model by applying it to the management of Ecological Networks, which describe the structure of existing real ecosystems and help planning their expansion, conservation and improvement by introducing constraints on land use.

This work is funded by the University of Torino, projects “Ricerca Locale” and “Ricerca Autofinanziata”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    All the graphs describing portions of the EN and Constraint Ontologies have been produced using the Dia Editor [35].

  2. 2.

    In OWL, referring to classes and properties as values of other properties is problematic; see [54]. We avoid these difficulties by only using such references in SPARQL [56] queries.

  3. 3.

    So far, we added one custom property (named separates) that will be used in the examples below.

  4. 4.

    Following the graphic notation described in [52], the rounded rectangles represent individuals, while dashed arrows symbolize instance-of relationships.

References

  1. Abrahao, E., Hirakawa, A.: Complex task ontology conceptual modelling: towards the development of the agriculture operations task ontology. In: Proceedings of 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2018). SCITEPRESS, Seville (2018)

    Google Scholar 

  2. Ahuja, R.K., Mehlhorn, K., Orlin, J., Tarjan, R.E.: Faster algorithms for the shortest path problem. J. ACM (JACM) 37(2), 213–223 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  3. Apache: Apache jena (2019). https://jena.apache.org/

  4. Battle, R., Kolas, D.: Enabling the geospatial Semantic Web with Parliament and GeoSPARQL. Semant. Web 3(4), 355–370 (2012)

    Article  Google Scholar 

  5. Benedict, M., McMahon, E.: Green Infrastructure: Smart Conservation for the 21st Century. Watch Clearinghouse Monograph Series, Sprawl (2002)

    Google Scholar 

  6. Bennett, G., Mulongoy, K.: Review of Experience with Ecological Networks, Corridors and Buffer Zones. Technical Series, vol. 23 (2006)

    Google Scholar 

  7. Bennett, G., Wit, P.: The Development and Application of Ecological Networks: A Review of Proposals, Plans and Programmes. AIDEnvironment (2001)

    Google Scholar 

  8. Boley, H., Tabet, S., Wagner, G.: Design rationale of RuleML: a markup language for semantic web rules. In: Proceedings of the First International Conference on Semantic Web Working, pp. 381–401. CEUR-WS. org (2001)

    Google Scholar 

  9. Buttigieg, P.L.: Ecology Core Ontology (2018). https://github.com/EcologicalSemantics/ecocore. Accessed 28 July 2018

  10. Buttigieg, P.L., Pafilis, E., Lewis, S.E., Schildhauer, M.P., Walls, R.L., Mungall, C.J.: The environment ontology in 2016: bridging domains with increased scope, semantic density, and interoperation. J. Biomed. Semant. 7(1), 57 (2016). https://doi.org/10.1186/s13326-016-0097-6

    Article  Google Scholar 

  11. Città Metropolitana di Torino: Misura 323 del PSR 2007–2013 (2014). http://www.cittametropolitana.torino.it/cms/territorio-urbanistica/misura-323/misura-323-sperimentale

  12. Città Metropolitana di Torino: Torino Metropoli - Città Metropolitana di Torino (2019). http://www.cittametropolitana.torino.it

  13. Council of Europe: General guidelines for the development of the Pan-European Ecological Network. Nature and environment, no. 107 (2000)

    Google Scholar 

  14. ENEA: Agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (2019). http://www.enea.it/it

  15. Fath, B., Sharler, U., Ulanowicz, R., Hannon, B.: Ecological network analysis: network construction. Trends Ecol. Evol. 208, 49–55 (2007)

    Google Scholar 

  16. Felfernig, A., Friedrich, G., Jannach, D., Zanker, M.: Configuration knowledge representation using UML/OCL. In: Jézéquel, J.-M., Hussmann, H., Cook, S. (eds.) UML 2002. LNCS, vol. 2460, pp. 49–62. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45800-X_5

    Chapter  MATH  Google Scholar 

  17. Fonseca, F., Egenhofer, M., Agouris, P., Câmara, G.: Using ontologies for geographic information systems. Trans. GIS 3, 231–257 (2002)

    Article  Google Scholar 

  18. Fonseca, F., Egenhofer, M., Davis, C.A., Câmara, G.: Semantic granularity in ontology-driven geographic information systems. Ann. Math. Artif. Intell. 36(1–2), 121–151 (2002). https://doi.org/10.1023/A:1015808104769

    Article  MathSciNet  MATH  Google Scholar 

  19. GeoNames.org: Geonames mappings ontology (2018). http://www.geonames.org/ontology/mappings_v3.01.rdf

  20. GeoNames.org: Geonames (2019). http://www.geonames.org/

  21. Gobluski, A., Westlund, E., Vandermeer, J., Pascual, M.: Ecological networks over the edge: hypergraph trait-mediated indirect interaction (TMII) structure. Trends Ecol. Evol. 31(5), 344–354 (2016)

    Article  Google Scholar 

  22. Gray, P., Hui, K., Preece, A.: An expressive constraint language for semantic web applications. In: E-Business and the Intelligent Web: Papers from the IJCAI-01 Workshop, pp. 46–53 (2001)

    Google Scholar 

  23. Object Management Group: Unified Modeling Language (UML) (2008). http://www.uml.org

  24. Gruber, T.: Towards principles for the design of ontologies used for knowledge sharing. Int. J. Hum.-Comput. Stud. 43(5–6), 907–928 (1995)

    Article  Google Scholar 

  25. Guarino, N., Oberle, D., Staab, S.: What Is an ontology? In: Staab, S., Studer, R. (eds.) Handbook on Ontologies. IHIS, pp. 1–17. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-92673-3_0

    Chapter  Google Scholar 

  26. Hall, M., Mandl, P.: Spatially extended ontologies for a semantic model of harmonised landuse and landcover information, April 2006

    Google Scholar 

  27. Horrocks, I., Patel-Schneider, P., Boley, H., Tabet, S., Grosof, B., Dean, M.: SWRL: A semantic web rule language combining OWL and RuleML. W3C Member Submiss. 21, 1–31 (2004)

    Google Scholar 

  28. Ingaramo, R., Salizzoni, E., Voghera, A.: La valutazione dei servizi ecosistemici forestali per la pianificazione e il progetto del territorio e del paesaggio. Valori e valutazioni 19, 65–78 (2018)

    Google Scholar 

  29. Janowicz, K., Scheider, S., Pehle, T., Ha, G.: Geospatial semantics and linked spatiotemporal data - past, present, and future. Semant. Web 3(4), 321–332 (2012). On linked spatiotemporal data and geo-ontologies

    Article  Google Scholar 

  30. Janowicz, K., Scheider, S., Pehle, T., Ha, G.: LinkedGeoData: a core for a web of spatial open data. Semant. Web 3(4), 333–354 (2012). Interoperability, Usability, Applicability

    Article  Google Scholar 

  31. Jongman, R.: Nature conservation planning in Europe: developing ecological networks. Landsc. Urban Plann. 32(3), 169–183 (1995)

    Article  Google Scholar 

  32. Lazoglou, M., Angelides, D.C.: Development of an ontology for modeling spatial planning systems. Curr. Urban Stud. 4(02), 241 (2016)

    Article  Google Scholar 

  33. Louwsma, J., Zlatanova, S., van Lammeren, R., van Oosterom, P.: Specifying and implementing constraints in GIS - with examples from a geo-virtual reality system. GeoInformatica 10(4), 531–550 (2006). https://doi.org/10.1007/s10707-006-0345-5

    Article  Google Scholar 

  34. Lurgi, M., Robertson, D.: Automated experimentation in ecological networks. Autom. Exp. 3(1), 1 (2011)

    Article  Google Scholar 

  35. Macke, S.: Dia diagram editor (2019). http://dia-installer.de/

  36. Mauro, N., Di Rocco, L., Ardissono, L., Bertolotto, M., Guerrini, G.: Impact of semantic granularity on geographic information search support. In: Proceedings of 2018 IEEE/WIC/ACM International Conference on Web Intelligence (WI), pp. 323–328. IEEE, Santiago (2019)

    Google Scholar 

  37. Montenegro, N., Gomes, J., Urbano, P., Duarte, J.: An OWL2 land use ontology: LBCS. In: Murgante, B., Gervasi, O., Iglesias, A., Taniar, D., Apduhan, B.O. (eds.) ICCSA 2011. LNCS, vol. 6783, pp. 185–198. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21887-3_15

    Chapter  Google Scholar 

  38. OGC: Geosparql vocabulary (2012). http://schemas.opengis.net/geosparql/1.0/geosparql_vocab_all.rdf

  39. Open Geospatial Consortium, et al.: OpenGIS Implementation Standard for Geographic information-Simple feature access-Part 1: Common architecture (2011)

    Google Scholar 

  40. Palacio, D., Derungs, C., Purves, R.: Development and evaluation of a geographic information retrieval system using fine grained toponyms. J. Spatial Inf. Sci. JoSIS 11, 1–29 (2015)

    Google Scholar 

  41. Pilosof, S., Porter, M., Pascual, M., Kefi, S.: The mulutilayer nature of ecological networks. Nat. Ecol. Evol. 1(4), 1–9 (2017). article 101

    Article  Google Scholar 

  42. Provincia di Torino: Linee guida per le reti ecologiche (2014) (in Italian). http://www.provincia.torino.gov.it/territorio/file-storage/download/pdf/pian_territoriale/rete_ecologica/lgsv_lgre.pdf

  43. Quercia, D., Schifanella, R., Aiello, L.: The shortest path to happiness: recommending beautiful, quiet, and happy routes in the city. In: Proceedings of the 25th ACM Conference on Hypertext and Social Media (HT 2014), pp. 116–125. ACM, New York (2014)

    Google Scholar 

  44. SDS Consortium: Spatial decision support ontology (2017). http://sdsportal.sdsconsortium.org/ontology/

  45. Soininen, T., Tiihonen, J., Männistö, T., Sulonen, R.: Towards a general ontology of configuration. AI EDAM 12(4), 357–372 (1998)

    Google Scholar 

  46. Stumptner, M., Friedrich, G.E., Haselböck, A.: Generative constraint-based configuration of large technical systems. AI EDAM 12(4), 307–320 (1998)

    Google Scholar 

  47. Sun, Y., Li, S.: Real-time collaborative GIS: a technological review. ISPRS J. Photogramm. Remote Sens. 115, 143–152 (2016)

    Article  Google Scholar 

  48. Torta, G., Ardissono, L., Savoca, A., Voghera, A., La Riccia, L.: Representing ecological network specifications with semantic web techniques. In: Proceedings of 9th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2017), pp. 86–97. SCITEPRESS, Funchal (2017)

    Google Scholar 

  49. Torta, G., Ardissono, L., Corona, M., La Riccia, L., Angioletta, V.: Ontological representation of constraints for geographic reasoning. In: Proceedings of 10th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management (KEOD 2018), pp. 136–147. SCITEPRESS, Seville (2018)

    Google Scholar 

  50. Torta, G., Ardissono, L., Corona, M., La Riccia, L., Savoca, A., Voghera, A.: GeCoLan: a constraint language for reasoning about ecological networks in the semantic web. In: Fred, A., et al. (eds.) IC3K 2017. CCIS, vol. 976, pp. 268–293. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-15640-4_14

    Chapter  Google Scholar 

  51. Ulanowicz, R.: Quantitative methods for ecological network analysis. Comput. Biol. Chem. 28, 321–339 (2004)

    Article  MATH  Google Scholar 

  52. Van Hage, W.R., Malaisé, V., Segers, R., Hollink, L., Schreiber, G.: Design and use of the simple event model (SEM). Web Semant. 9(2), 128–136 (2011). Science, Services and Agents on the World Wide Web

    Article  Google Scholar 

  53. Voghera, A., La Riccia, L.: Ecological networks in urban planning: between theoretical approaches and operational measures. In: Calabrò, F., Della Spina, L., Bevilacqua, C. (eds.) ISHT 2018. SIST, vol. 101, pp. 672–680. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-92102-0_73

    Chapter  Google Scholar 

  54. W3C: Representing classes as property values on the semantic web (2017). https://www.w3.org/TR/2005/NOTE-swbp-classes-as-values-20050405/

  55. W3C: Resource description framework (RDF) (2017). https://www.w3.org/RDF/

  56. W3C: SPARQL query language for RDF (2017). https://www.w3.org/TR/rdf-sparql-query/

  57. W3C: Web ontology language (OWL) (2017). https://www.w3.org/OWL/

Download references

Acknowledgements

We thank Adriano Savoca and Marco Corona for their contributions to this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca Torta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Torta, G., Ardissono, L., Fea, D., La Riccia, L., Voghera, A. (2020). A Semantic Approach to Constraint-Based Reasoning in Geographical Domains. In: Fred, A., Salgado, A., Aveiro, D., Dietz, J., Bernardino, J., Filipe, J. (eds) Knowledge Discovery, Knowledge Engineering and Knowledge Management. IC3K 2018. Communications in Computer and Information Science, vol 1222. Springer, Cham. https://doi.org/10.1007/978-3-030-49559-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49559-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49558-9

  • Online ISBN: 978-3-030-49559-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics