Skip to main content

Early Experience in Benchmarking Edge AI Processors with Object Detection Workloads

  • Conference paper
  • First Online:
Benchmarking, Measuring, and Optimizing (Bench 2019)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12093))

Included in the following conference series:

Abstract

Nowadays, GPGPU plays an important role in data centers for Deep Learning training. However, GPU might not be suitable for many Deep Learning inference applications, especially for Edge Computing scenarios, due to its high power consumption and high cost. Thus, researchers and engineers have spent a lot of effort on designing edge-side artificial intelligence (AI) processors recently. Because of different edge-side application requirements, edge AI processors are designed with different approaches, which make these processors very diversified. This scenario makes it hard for customers to decide what kind of processors may be more beneficial for their requirements. To provide a selection guidance, this paper proposes a three-dimensional benchmarking methodology and shares the early experience of evaluating three different kinds of edge AI processors (i.e., Edge TPU, NVIDIA Xavier, and NovuTensor) with object detection workloads (i.e., Tiny-YOLO and YOLOv2 with Microsoft COCO dataset). We also characterize a GPU platform (i.e., GTX 1080 Ti) from the three dimensions of accuracy, latency, and energy efficiency. Based on our experimental observations, we find that edge AI processors are able to deliver better energy efficiency (e.g., Edge TPU has the highest energy efficiency in our experiments.), while NovuTensor and Xavier, can also provide comparable performance in latency as GPU. Further, all these edge AI processors can achieve similar accuracy as GPU. The differences among these processors and GPU are less than 3%.

This research is supported in part by National Science Foundation grant CCF#1822987.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benchmarking Edge Computing. https://medium.com/@aallan/benchmarking-edge-computing-ce3f13942245

  2. DarkFlow. https://github.com/thtrieu/darkflow

  3. Darknet. https://github.com/pjreddie/darknet

  4. Deepstream Reference Applications. https://github.com/NVIDIA-AI-IOT/deepstream_reference_apps

  5. Models Built for Edge TPU. https://coral.withgoogle.com/models/

  6. MS COCO API. https://github.com/cocodataset/cocoapi

  7. NVIDIA Jetson AGX Xavier. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit

  8. Post-Training Integer Quantization. https://medium.com/tensorflow/tensorflow-model-optimization-toolkit-post-training-integer-quantization-b4964a1ea9ba

  9. Chakradhar, S., Sankaradas, M., Jakkula, V., Cadambi, S.: A dynamically configurable coprocessor for convolutional neural networks. In: ACM SIGARCH Computer Architecture News, vol. 38, pp. 247–257. ACM (2010)

    Google Scholar 

  10. Chen, T., et al.: BenchNN: on the broad potential application scope of hardware neural network accelerators. In: 2012 IEEE International Symposium on Workload Characterization (IISWC), pp. 36–45. IEEE (2012)

    Google Scholar 

  11. Chen, Y., Chen, T., Zhiwei, X., Sun, N., Temam, O.: DianNao family: energy-efficient hardware accelerators for machine learning. Communi. ACM 59(11), 105–112 (2016)

    Article  Google Scholar 

  12. Chetlur, S., et al.: cuDNN: efficient primitives for deep learning. arXiv preprint arXiv:1410.0759 (2014)

  13. Ciresan, D.C., Meier, U., Masci, J., Gambardella, L.M., Schmidhuber, J.: Flexible, high performance convolutional neural networks for image classification. In: Twenty-Second International Joint Conference on Artificial Intelligence (2011)

    Google Scholar 

  14. Coates, A., Huval, B., Wang, T., Wu, D., Catanzaro, B., Andrew, N.: Deep learning with COTS HPC systems. In: International Conference on Machine Learning, pp. 1337–1345 (2013)

    Google Scholar 

  15. Das, A., Patterson, S., Wittie, M.: Edgebench: benchmarking edge computing platforms. In: 2018 IEEE/ACM International Conference on Utility and Cloud Computing Companion (UCC Companion), pp. 175–180. IEEE (2018)

    Google Scholar 

  16. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  17. Everingham, M., Gool, L.V., KI Williams, C., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303–338 (2010)

    Article  Google Scholar 

  18. Girshick, R.: Fast R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1440–1448 (2015)

    Google Scholar 

  19. Girshick, R., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 580–587 (2014)

    Google Scholar 

  20. Han, S., et al.. EIE: efficient inference engine on compressed deep neural network. In: 2016 ACM/IEEE 43rd Annual International Symposium on Computer Architecture (ISCA), pp. 243–254. IEEE (2016)

    Google Scholar 

  21. Hao, T., et al.: EdgeAI bench: towards comprehensive end-to-end edge computing benchmarking. In: 2018 Bench Council International Symposium on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

    Google Scholar 

  22. Hashemi, S., Anthony, N., Tann, H., Bahar, I.R., Reda, S.: Understanding the impact of precision quantization on the accuracy and energy of neural networks. In Design, Automation & Test in Europe Conference & Exhibition (DATE), 2017, pp. 1474–1479. IEEE (2017)

    Google Scholar 

  23. Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.R.: Improving neural networks by preventing co-adaptation of feature detectors. arXiv preprint arXiv:1207.0580 (2012)

  24. Jacob, B., et al.: Quantization and training of neural networks for efficient integer-arithmetic-only inference. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2704–2713 (2018)

    Google Scholar 

  25. Jouppi, N.P., et al.: In-datacenter performance analysis of a tensor processing unit. In: 2017 ACM/IEEE 44th Annual International Symposium on Computer Architecture (ISCA), pp. 1–12. IEEE (2017)

    Google Scholar 

  26. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  27. Wick, C.: Deep learning. Informatik-Spektrum 40(1), 103–107 (2016). https://doi.org/10.1007/s00287-016-1013-2

    Article  Google Scholar 

  28. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P., et al.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  29. Lee, Y.-L., Tsung, P.-K., Wu, M.: Techology trend of edge AI. In: 2018 International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1–2. IEEE (2018)

    Google Scholar 

  30. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  31. Liu, W., et al.: SSD: single shot multibox detector. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9905, pp. 21–37. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46448-0_2

    Chapter  Google Scholar 

  32. Lu, C.P., Tang, Y.-S.: Native Tensor Processor, and Partitioning of Tensor Contractions. https://patentscope.wipo.int/search/en/detail.jsf?docId=US225521272&tab=NATIONALBIBLIO

  33. Luo, C., et al.: AIoT bench: towards comprehensive benchmarking mobile and embedded device intelligence. In: 2018 Bench Council International Symposium on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

    Google Scholar 

  34. Manolakos, E.S., Stamoulias, I.: IP-Cores design for the kNN classifier. In: Proceedings of 2010 IEEE International Symposium on Circuits and Systems, pp. 4133–4136. IEEE (2010)

    Google Scholar 

  35. Nickolls, J., Buck, I., Garland, M.: Scalable parallel programming. In: 2008 IEEE Hot Chips 20 Symposium (HCS), pp. 40–53. IEEE (2008)

    Google Scholar 

  36. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  37. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7263–7271 (2017)

    Google Scholar 

  38. Stamoulias, I., Manolakos, E.S.: Parallel architectures for the kNN classifier-design of soft IP cores and FPGA implementations. ACM Trans. Embedded Comput. Syst. (TECS) 13(2), 22 (2013)

    Google Scholar 

  39. Yeh, Y.-J., Li, H.-Y., Hwang, W.-J., Fang, C.-Y.: FPGA implementation of kNN classifier based on wavelet transform and partial distance search. In: Ersbøll, B.K., Pedersen, K.S. (eds.) SCIA 2007. LNCS, vol. 4522, pp. 512–521. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73040-8_52

    Chapter  Google Scholar 

  40. Zhang, Q., et al.: A survey on deep learning benchmarks: do we still need new ones? In: 2018 Bench Council International Symposium on Benchmarking, Measuring and Optimizing (Bench 2018) (2018)

    Google Scholar 

  41. Zhao, Z.-Q., Zheng, P., Xu, S.-T., Wu, X.: A review. IEEE Transactions on Neural Networks and Learning Systems, Object Detection with Deep Learning (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yujie Hui .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hui, Y., Lien, J., Lu, X. (2020). Early Experience in Benchmarking Edge AI Processors with Object Detection Workloads. In: Gao, W., Zhan, J., Fox, G., Lu, X., Stanzione, D. (eds) Benchmarking, Measuring, and Optimizing. Bench 2019. Lecture Notes in Computer Science(), vol 12093. Springer, Cham. https://doi.org/10.1007/978-3-030-49556-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49556-5_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49555-8

  • Online ISBN: 978-3-030-49556-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics