Skip to main content

Emotion Synchronization Method for Robot Facial Expression

  • Conference paper
  • First Online:
Human-Computer Interaction. Multimodal and Natural Interaction (HCII 2020)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12182))

Included in the following conference series:

Abstract

Nowadays, communication robots are becoming popular since they are actively used in both commercially and personally. Increasing empathy between human-robot can effectively enhance the positive impression. Empathy can be created by syncing human emotion with the robot expression. Emotion estimation can be done by analyzing controllable expressions like facial expression, or uncontrollable expression like biological signals. In this work, we propose the comparison of robot expression synchronization with estimated emotion based on either facial expression or biological signal. In order to find out which of the proposed methods yield the best impression, subjective impression rating is used in the experiment. From the result of the impression evaluation, we found that the robot’s facial expression synchronization using the synchronization based on periodical emotion value performs the best and best suitable for emotion estimated both from facial expression and biological signal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Misaki, Y., Ito, T., Hashimoto, M.: Proposal of human-robot interaction method based on emotional entrainment. In: HAI Symposium (2008). (in Japanese)

    Google Scholar 

  2. Kurono, Y., Sripian, P., Chen, F., Sugaya, M.: A preliminary experiment on the estimation of emotion using facial expression and biological signals. In: Kurosu, M. (ed.) HCII 2019. LNCS, vol. 11567, pp. 133–142. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22643-5_10

    Chapter  Google Scholar 

  3. Sripian, P., et al.: Study of empathy on robot expression based on emotion estimated from facial expression and biological signals. In: The 28th IEEE International Conference on Robot & Human Interactive Communication, New Delhi, India (2019). IEEE

    Google Scholar 

  4. Hirth, J., Schmitz, N., Berns, K.: Emotional architecture for the humanoid robot head ROMAN. In: IEEE International Conference on Robotics and Automation, pp. 2150–2155. IEEE (2007)

    Google Scholar 

  5. Breazeal, C., Scassellati, B.: A context-dependent attention system for a social robot. rn 255, 3 (2003)

    Google Scholar 

  6. Ekman, P., Friesen, W.V.: Facial Action Coding System: Investigator’s Guide. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  7. Nwe, T.L., Foo, S.W., De Silva, L.C.: Speech emotion recognition using hidden Markov models. Speech Commun. 41(4), 603–623 (2003)

    Article  Google Scholar 

  8. Mehrabian, A.: Basic Dimensions for a General Psychological Theory: Implications for Personality, Social, Environmental, and Developmental Studies. Oelgeschlager, Gunn & Hain, Cambridge (1980)

    Google Scholar 

  9. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39(6), 1161 (1980)

    Article  Google Scholar 

  10. Tanaka, H., Ide, H., Nagashuma, Y.: An attempt of feeling analysis by the nasal temperature change model. In: SMC 2000 Conference Proceedings, 2000 IEEE International Conference on Systems, Man And Cybernetics. ‘Cybernetics Evolving to Systems, Humans, Organizations, and Their Complex Interactions’ (cat. no. 0. 2000. IEEE

    Google Scholar 

  11. Ikeda, Y., Horie, R., Sugaya, M.: Estimate emotion with biological information for robot interaction. In: 21st International Conference on Knowledge-Based and Intelligent Information & Engineering Systems (KES-2017), Marseille, France, pp. 6–8 2017

    Google Scholar 

  12. Okada, A., Sugaya, M.: Interaction design and impression evaluation of the Person and the active robot. In: Human Computer Interaction (HCI), pp. 1–6 (2016). (in Japanese)

    Google Scholar 

  13. Osgood, C.E.: Semantic differential technique in the comparative study of cultures. Am. Anthropol. 66(3), 171–200 (1964)

    Article  Google Scholar 

  14. Baveye, Y., et al.: LIRIS-ACCEDE: a video database for affective content analysis. IEEE Trans. Affect. Comput. 6(1), 43–55 (2015)

    Article  Google Scholar 

  15. Hayashi, F.: The fundamental dimensions of interpersonal cognitive structure. Bull. Fac. Educ. Nagoya Univ. 25, 233–247 (1978)

    Google Scholar 

  16. Hayashi, R., Kato, S.: Psychological effects of physical embodiment in artificial pet therapy. Artif. Life Robotics 22(1), 58–63 (2017). https://doi.org/10.1007/s10015-016-0320-7

    Article  Google Scholar 

  17. Bradley, M.M., Lang, P.J.: Measuring emotion: the self-assessment manikin and the semantic differential. J. Behav. Ther. Exp. Psychiatry 25(1), 49–59 (1994)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peeraya Sripian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kajihara, Y., Sripian, P., Feng, C., Sugaya, M. (2020). Emotion Synchronization Method for Robot Facial Expression. In: Kurosu, M. (eds) Human-Computer Interaction. Multimodal and Natural Interaction. HCII 2020. Lecture Notes in Computer Science(), vol 12182. Springer, Cham. https://doi.org/10.1007/978-3-030-49062-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-49062-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-49061-4

  • Online ISBN: 978-3-030-49062-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics