Skip to main content

Cavity Ground-State Chemistry

  • Chapter
  • First Online:
Polaritonic Chemistry

Part of the book series: Springer Theses ((Springer Theses))

  • 406 Accesses

Abstract

In recent years, the possibility of influencing the thermally driven reactivity of organic molecules in the electronic ground state has been demonstrated by coupling the cavity to vibrational transitions of the molecules (Thomas et al. in Angew Chem Int Ed 55:11462, 2016 [1]; Hiura et al. in ChemRxiv 7234721, 2018 [2]; Lather et al. in ChemRxiv 7531544, 2018 [3]; Thomas et al. in Science 363:615, 2019 [4]). This opens a wide range of possibilities, such as cavity-enabled catalysis and manipulation of ground-state chemical processes. In this chapter we theoretically investigate the possibility of modifying ground-state chemical properties of organic molecules. Other attempts to understanding these experimental observations have been done.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Do not confuse the photonic displacement \(q_k\) with the generalized nuclear coordinate \(\mathbf {q}\) used in previous chapters. To avoid confusion, in this chapter nuclear coordinates are explicitly denoted \(\mathbf {R}\).

  2. 2.

    Note that the vector dependence is in the coupling constant \(\varvec{\lambda }_k = \lambda _k \mathbf {e}_k\) so that the photonic displacement \(\hat{q}_k\) is a scalar operator.

  3. 3.

    Note that both Eqs. 2.29 and 6.6 represent the same equation if we considered the photonic term \(\frac{\hat{p}_k^2}{2}\) as the kinetic energy of another nuclear DoF.

  4. 4.

    Note that the description used here can also represent a dielectric sphere with a single resonance, such as a phonon mode.

References

  1. Thomas A, George J, Shalabney A, Dryzhakov M, Varma SJ, Moran J, Chervy T, Zhong X, Devaux E, Genet C, Hutchison JA, Ebbesen TW (2016) Ground-state chemical reactivity under vibrational coupling to the vacuum electromagnetic field. Angew Chem Int Ed 55:11462

    Google Scholar 

  2. Hiura H, Shalabney A, George J (2018) Cavity catalysis -accelerating reactions under vibrational strong coupling-. ChemRxiv 7234721

    Google Scholar 

  3. Lather J, Bhatt P, Thomas A, Ebbesen TW, George J (2018) Cavity catalysis by co-operative vibrational strong coupling of reactant and solvent molecules. ChemRxiv 7531544

    Google Scholar 

  4. Thomas A, Lethuillier-Karl L, Nagarajan K, Vergauwe RMA, George J, Chervy T, Shalabney A, Devaux E, Genet C, Moran J, Ebbesen TW (2019) Tilting a ground-state reactivity landscape by vibrational strong coupling. Science 363:615

    ADS  Google Scholar 

  5. Galego J, Garcia-Vidal FJ, Feist J (2015) Cavity-induced modifications of molecular structure in the strong-coupling regime. Phys Rev X 5:41022

    Google Scholar 

  6. Martínez-Martínez LA, Ribeiro RF, Campos-González-Angulo J, Yuen-Zhou J (2018) Can ultrastrong coupling change ground-state chemical reactions? ACS Photonics 5:167

    Google Scholar 

  7. Flick J, Ruggenthaler M, Appel H, Rubio A (2015) Kohn-Sham approach to quantum electrodynamical density-functional theory: exact time-dependent effective potentials in real space. Proc Natl Acad Sci 112:15285

    ADS  Google Scholar 

  8. Flick J, Ruggenthaler M, Appel H, Rubio A (2017) Atoms and molecules in cavities, from weak to strong coupling in quantum-electrodynamics (QED) chemistry. Proc Natl Acad Sci 114:3026

    Google Scholar 

  9. Flick J, Appel H, Ruggenthaler M, Rubio A (2017) Cavity Born-Oppenheimer approximation for correlated electron-nuclear-photon systems. J Chem Theory Comput 13:1616

    Google Scholar 

  10. Angulo JCG, Ribeiro RF, Yuen-Zhou J (2019) Resonant enhancement of thermally-activated chemical reactions via vibrational polaritons. arXiv preprint arXiv:1902.10264

  11. Shin S, Metiu H (1995) Nonadiabatic effects on the charge transfer rate constant: a numerical study of a simple model system. J Chem Phys 102:9285

    ADS  Google Scholar 

  12. Yamamoto T (1960) Quantum statistical mechanical theory of the rate of exchange chemical reactions in the gas phase. J Chem Phys 33:281

    ADS  MathSciNet  Google Scholar 

  13. Miller WH (1974) Quantum mechanical transition state theory and a new semiclassical model for reaction rate constants. J Chem Phys 61:1823

    ADS  Google Scholar 

  14. Miller WH, Schwartz SD, Tromp JW (1983) Quantum mechanical rate constants for bimolecular reactions. J Chem Phys 79:4889

    ADS  Google Scholar 

  15. Eyring H (1935) The activated complex in chemical reactions. J Chem Phys 3:107

    ADS  Google Scholar 

  16. Laidler KJ (1987) Chemical kinetics, 3rd edn. Harper & Row, New York

    Google Scholar 

  17. Chikkaraddy R, de Nijs B, Benz F, Barrow SJ, Scherman OA, Rosta E, Demetriadou A, Fox P, Hess O, Baumberg JJ (2016) Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature 535:127

    ADS  Google Scholar 

  18. Benz F, Schmidt MK, Dreismann A, Chikkaraddy R, Zhang Y, Demetriadou A, Carnegie C, Ohadi H, De Nijs B, Esteban R, Aizpurua J, Baumberg JJ (2016) Single-molecule optomechanics in “picocavities”. Science 354:726

    ADS  Google Scholar 

  19. Urbieta M, Barbry M, Zhang Y, Koval P, Sánchez-Portal D, Zabala N, Aizpurua J (2018) Atomic-scale lightning rod effect in plasmonic picocavities: a classical view to a quantum effect. ACS Nano 12:585

    Google Scholar 

  20. Tokatly IV (2013) Time-dependent density functional theory for many-electron systems interacting with cavity photons. Phys Rev Lett 110:233001

    ADS  Google Scholar 

  21. Faisal FH (2013) Theory of multiphoton processes. Springer Science & Business Media

    Google Scholar 

  22. Del Pino J, Feist J, Garcia-Vidal FJ (2015) Signatures of vibrational strong coupling in Raman scattering. J Phys Chem C 119:29132

    Google Scholar 

  23. Shalabney A, George J, Hutchison J, Pupillo G, Genet C, Ebbesen TW (2015) Coherent coupling of molecular resonators with a microcavity mode. Nat Commun 6:5981

    ADS  Google Scholar 

  24. Shin S, Metiu H (1996) Multiple time scale quantum wavepacket propagation: electron-nuclear dynamics. J Phys Chem 100:7867

    Google Scholar 

  25. Abedi A, Agostini F, Suzuki Y, Gross EKU (2013) Dynamical steps that bridge piecewise adiabatic shapes in the exact time-dependent potential energy surface. Phys Rev Lett 110:263001

    ADS  Google Scholar 

  26. Schneider BI, Feist J, Nagele S, Pazourek R, Hu S, Collins LA, Burgdörfer J (2011) Recent advances in computational methods for the solution of the time-dependent Schrödinger equation for the interaction of short, intense radiation with one and two-electron systems: application to He and H\(_2^+\). In: Bandrauk AD, Ivanov M (eds) Quantum dynamic imaging. CRM series in mathematical physics, vol 149. Springer, New York, NY

    Google Scholar 

  27. Feist J (2019) Collection of small useful helper tools for Python. https://github.com/jfeist/jftools

  28. González-Tudela A, Huidobro PA, Martín-Moreno L, Tejedor C, García-Vidal FJ (2014) Reversible dynamics of single quantum emitters near metal-dielectric interfaces. Phys Rev B Condens Matter Mater Phys 89

    Google Scholar 

  29. Delga A, Feist J, Bravo-Abad J, Garcia-Vidal FJ (2014) Quantum emitters near a metal nanoparticle: strong coupling and quenching. Phys Rev Lett 112

    Google Scholar 

  30. Delga A, Feist J, Bravo-Abad J, Garcia-Vidal FJ (2014) Theory of strong coupling between quantum emitters and localized surface plasmons. J Opt 16:114018

    ADS  Google Scholar 

  31. Li R-Q, Hernángomez-Pérez D, García-Vidal FJ, Fernández-Domínguez AI (2016) Transformation optics approach to plasmon-exciton strong coupling in nanocavities. Phys Rev Lett 117:107401

    ADS  Google Scholar 

  32. Fried SD, Boxer SG (2017) Electric fields and enzyme catalysis. Annu Rev Biochem 86:387

    Google Scholar 

  33. Welborn VV, Pestana LR, Head-Gordon T (2018) Computational optimization of electric fields for better catalysis design. Nat Catal 1:649

    Google Scholar 

  34. Bishop DM (1990) Molecular vibrational and rotational motion in static and dynamic electric fields. Rev Mod Phys 62:343

    ADS  Google Scholar 

  35. Bishop DM (1998) Molecular vibration and nonlinear optics. In: Prigogine I, Rice SA (eds) Advances in chemical physics, vol 1. Wiley-Blackwell

    Google Scholar 

  36. Cammi R, Mennucci B, Tomasi J (1998) Solvent effects on linear and nonlinear optical properties of donor-acceptor polyenes: investigation of electronic and vibrational components in terms of structure and charge distribution changes. J Am Chem Soc 120:8834

    Google Scholar 

  37. Simpkins BS, Fears KP, Dressick WJ, Spann BT, Dunkelberger AD, Owrutsky JC (2015) Spanning strong to weak normal mode coupling between vibrational and Fabry-Pérot cavity modes through tuning of vibrational absorption strength. ACS Photonics 2:1460

    Google Scholar 

  38. Dunkelberger AD, Spann BT, Fears KP, Simpkins BS, Owrutsky JC (2016) Modified relaxation dynamics and coherent energy exchange in coupled vibration-cavity polaritons. Nat Commun 7:13504

    ADS  Google Scholar 

  39. Casimir HBG, Polder D (1948) The influence of retardation on the London-van Der Waals forces. Phys Rev 73:360

    ADS  MATH  Google Scholar 

  40. Stone A (2013) The theory of intermolecular forces, 2nd edn. OUP Oxford

    Google Scholar 

  41. Craig DP, Thirunamachandran T (1998) Molecular quantum electrodynamics: an introduction to radiation-molecule interactions. Courier Corporation

    Google Scholar 

  42. Sukenik CI, Boshier MG, Cho D, Sandoghdar V, Hinds EA (1993) Measurement of the Casimir-Polder force. Phys Rev Lett 70:560

    ADS  Google Scholar 

  43. Buhmann SY (2007) Casimir-Polder forces on atoms in the presence of magnetoelectric bodies. Thesis (PhD), Friedrich-Schiller-Universität Jena

    Google Scholar 

  44. Scheel S, Buhmann SY (2008) Macroscopic quantum electrodynamics—concepts and applications. Acta Physica Slovaca 58:675

    ADS  Google Scholar 

  45. Lombardi A, Schmidt MK, Weller L, Deacon WM, Benz F, de Nijs B, Aizpurua J, Baumberg JJ (2018) Pulsed molecular optomechanics in plasmonic nanocavities: from nonlinear vibrational instabilities to bond-breaking. Phys Rev X 8:011016

    Google Scholar 

  46. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648

    Google Scholar 

  47. Isborn CM, Luehr N, Ufimtsev IS, Martínez TJ (2011) Excited-state electronic structure with configuration interaction singles and Tamm-Dancoff time-dependent density functional theory on graphical processing units. J Chem Theory Comput 7:1814

    Google Scholar 

  48. Ufimtsev IS, Martinez TJ (2009) Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. J Chem Theory Comput 5:2619

    Google Scholar 

  49. Titov AV, Ufimtsev IS, Luehr N, Martinez TJ (2013) Generating efficient quantum chemistry codes for novel architectures. J Chem Theory Comput 9:213

    Google Scholar 

  50. George J, Shalabney A, Hutchison JA, Genet C, Ebbesen TW (2015) Liquid-phase vibrational strong coupling. J Phys Chem Lett 6:1027

    Google Scholar 

  51. De Bernardis D, Jaako T, Rabl P (2018) Cavity quantum electrodynamics in the nonperturbative regime. Phys Rev A 97:043820

    ADS  MathSciNet  Google Scholar 

  52. Axilrod BM, Teller E (1943) Interaction of the van Der Waals type between three atoms. J Chem Phys 11:299

    ADS  Google Scholar 

  53. Nicosia C, Huskens J (2013) Reactive self-assembled monolayers: from surface functionalization to gradient formation. Mater Horiz 1:32

    Google Scholar 

  54. Acuna GP, Möller FM, Holzmeister P, Beater S, Lalkens B, Tinnefeld P (2012) Fluorescence enhancement at docking sites of DNA-directed self-assembled nanoantennas. Science 338:506

    ADS  Google Scholar 

  55. Chikkaraddy R, Turek VA, Kongsuwan N, Benz F, Carnegie C, van de Goor T, de Nijs B, Demetriadou A, Hess O, Keyser UF, Baumberg JJ (2018) Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Lett 18:405

    ADS  Google Scholar 

  56. Kéna-Cohen S, Davanço M, Forrest SR (2008) Strong exciton-photon coupling in an organic single crystal microcavity. Phys Rev Lett 101:116401

    ADS  Google Scholar 

  57. Hulliger J, Wüst T, Brahimi K, Martinez Garcia JC (2012) Can mono domain polar molecular crystals exist? Cryst Growth Des 12:5211

    Google Scholar 

  58. Hertzog M, Rudquist P, Hutchison JA, George J, Ebbesen TW, Börjesson K (2017) Voltage-controlled switching of strong light–matter interactions using liquid crystals. Chem Eur J 23:18166

    Google Scholar 

  59. Waks E, Sridharan D (2010) Cavity QED treatment of interactions between a metal nanoparticle and a dipole emitter. Phys Rev A 82:043845

    ADS  Google Scholar 

  60. Gonzalez-Ballestero C, Feist J, Moreno E, Garcia-Vidal FJ (2015) Harvesting excitons through plasmonic strong coupling. Phys Rev B Condens Matter Mater Phys

    Google Scholar 

  61. Anger P, Bharadwaj P, Novotny L (2006) Enhancement and quenching of single-molecule fluorescence. Phys Rev Lett 96:113002

    ADS  Google Scholar 

  62. de Vries P, van Coevorden D, Lagendijk A (1998) Point scatterers for classical waves. Rev Mod Phys 70:447

    ADS  Google Scholar 

  63. Bonin KD, Kresin VV (1997) Electric-dipole polarizabilities of atoms, molecules, and clusters. World Scientific Publishing Co. Pte. Ltd

    Google Scholar 

  64. Chipot C, Pohorille A, Castleman AW, Toennies JP, Yamanouchi K, Zinth W (eds) (2007) Free energy calculations. Springer series in chemical physics, vol 86. Springer, Berlin, Heidelberg

    Google Scholar 

  65. Mendieta-Moreno JI, Trabada DG, Mendieta J, Lewis JP, Gómez-Puertas P, Ortega J (2016) Quantum mechanics/molecular mechanics free energy maps and nonadiabatic simulations for a photochemical reaction in DNA: cyclobutane thymine dimer. J Phys Chem Lett 7:4391

    Google Scholar 

  66. Cortese E, Lagoudakis PG, De Liberato S (2017) Collective optomechanical effects in cavity quantum electrodynamics. Phys Rev Lett 119:043604

    ADS  Google Scholar 

  67. Keeling J, Kirton PG (2018) Orientational alignment in cavity quantum electrodynamics. Phys Rev A 97:053836

    ADS  Google Scholar 

  68. Akpati H, Nordlander P, Lou L, Avouris P (1997) The effects of an external electric field on the adatom-surface bond: H and Al adsorbed on Si (111). Surf Sci 372:9

    ADS  Google Scholar 

  69. Sowlati-Hashjin S, Matta CF (2013) The chemical bond in external electric fields: energies, geometries, and vibrational Stark shifts of diatomic molecules. J Chem Phys 139:144101

    ADS  Google Scholar 

  70. Ćwik JA, Kirton P, De Liberato S, Keeling J (2016) Excitonic spectral features in strongly coupled organic polaritons. Phys Rev A 93:033840

    ADS  Google Scholar 

  71. Nagasawa F, Takase M, Murakoshi K (2013) Raman enhancement via polariton states produced by strong coupling between a localized surface plasmon and dye excitons at metal nanogaps. J Phys Chem Lett 5:14

    Google Scholar 

  72. Buhmann SY, Scheel S (2008) Thermal Casimir versus Casimir-Polder forces: equilibrium and nonequilibrium forces. Phys Rev Lett 100:253201

    ADS  Google Scholar 

  73. Ellingsen SA, Buhmann SY, Scheel S (2010) Temperature-independent Casimir-Polder forces despite large thermal photon numbers. Phys Rev Lett 104:223003

    ADS  Google Scholar 

  74. Sinha K, Venkatesh BP, Meystre P (2018) Collective effects in Casimir-Polder forces. Phys Rev Lett 121:183605

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javier Galego Pascual .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Galego Pascual, J. (2020). Cavity Ground-State Chemistry. In: Polaritonic Chemistry. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-48698-3_6

Download citation

Publish with us

Policies and ethics