Skip to main content

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 140))

  • 351 Accesses

Abstract

In Chap. 2 we presented the fundamental methods employed for the analytical study of tethered aerial vehicles. However, in order to practically apply the presented control and estimation methods to the real robotic platform, we need a good understanding of the underlying subsystems, such as actuators and sensors, and the corresponding mathematical models. Therefore, in the following we shall closely analyze the robotic systems under exam, namely aerial vehicles connected by links, looking at their subsystems, actuators and sensors. We firstly characterize a generic link and a generic unidirectional-thrust aerial vehicle in a free-flight condition, deriving their dynamic models. Afterwards, looking at the robotic system from an actuation point of view, we closely analyze the thrusters, composed by brushless motor plus propeller, and servo/torque motors employed to actively change the link length. Finally, this time looking at the robotic system from a sensing point of view, we review the standard sensory setup that one can find on aerial vehicles, and the additional sensors that we intend to use to measure the configuration of the link. The following does not claim to be a deep and through discussion on aerial vehicles and their actuators and sensors. On the contrary, the intent is to introduce the mathematical models of the subsystems composing a tethered aerial vehicle, in order to better understand the relative theoretical results. For a more detailed discussion on aerial vehicles we will refer the reader to appropriate references.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sreenath, K., Kumar, V.: Dynamics, control and planning for cooperative manipulation of payloads suspended by cables from multiple quadrotor robots. In: Robotics: Science and Systems, Berlin, Germany, June (2013)

    Google Scholar 

  2. Sreenath, K., Michael, N., Kumar, V.: Trajectory generation and control of a quadrotor with a cable-suspended load-a differentially-flat hybrid system. In: 2013 IEEE International Conference on Robotics and Automation (ICRA), pp. 4888–4895. IEEE (2013)

    Google Scholar 

  3. Lupashin, S., D’Andrea, R.: Stabilization of a flying vehicle on a taut tether using inertial sensing. In: 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2432–2438, Tokyo, Japan, Nov (2013)

    Google Scholar 

  4. Nicotra, M.M., Naldi, R., Garone, E.: Nonlinear control of a tethered UAV: the taut cable case. Automatica 78, 174–184 (2017)

    Article  MathSciNet  Google Scholar 

  5. Sandino, L.A., Bejar, M., Kondak, K., Ollero, A.: Advances in modeling and control of tethered unmanned helicopters to enhance hovering performance. J. Intell. Robot. Syst. 73(1–4), 3–18 (2014)

    Article  Google Scholar 

  6. Liu, H.P., Anderson, D.L., Kanamori, H.: Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophys. J. Int. 47(1), 41–58 (1976)

    Article  Google Scholar 

  7. Zienkiewicz, O.C., Taylor, R.L.: The Finite Element Method for Solid and Structural Mechanics. Elsevier (2005)

    Google Scholar 

  8. Lee, T.: Geometric controls for a tethered quadrotor UAV. In: 2015 54th IEEE Conference on Decision and Control (CDC), pp. 2749–2754, Osaka, Japan, Dec (2015)

    Google Scholar 

  9. Goodarzi, F.A., Lee, T.: Stabilization of a rigid body payload with multiple cooperative quadrotors. J. Dyn. Syst. Meas. Control 138(12), 121001–121001–17 (2016)

    Google Scholar 

  10. Mahony, R., Kumar, V., Corke, P.: Multirotor aerial vehicles: modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 19(3), 20–32 (2012)

    Article  Google Scholar 

  11. Hua, M.-D., Hamel, T., Morin, P., Samson, C.: A control approach for thrust-propelled underactuated vehicles and its application to VTOL drones. IEEE Trans. Autom. Control 54(8), 1837–1853 (2009)

    Article  MathSciNet  Google Scholar 

  12. Hamel, T., Mahony, R., Lozano, R., Ostrowski, J.: Dynamic modelling and configuration stabilization for an X4-Flyer. In: 15th IFAC World Congress, pp. 217–222, Barcelona, Spain (2002)

    Google Scholar 

  13. Pounds, P.E., Mahony, R., Corke, P.: Modeling and control of a large quadrotor robot. Control Eng. Pract. 18(7), 691–699 (2010)

    Article  Google Scholar 

  14. Valavanis, K.P.: Advances in Unmanned Aerial Vehicles: State of the Art and the Road to Autonomy. Intelligent Systems, Control and Automation: Science and Engineering, vol. 33. Springer (2007)

    Google Scholar 

  15. Pucci, D., Hamel, T., Morin, P., Samson, C.: Nonlinear control of aerial vehicles subjected to aerodynamic forces. In: 2013 IEEE 52nd Annual Conference on Decision and Control (CDC), pp. 4839–4846. IEEE (2013)

    Google Scholar 

  16. Faessler, M., Franchi, A., Scaramuzza, D.: Differential flatness of quadrotor dynamics subject to rotor drag for accurate tracking of high-speed trajectories. IEEE Robot. Autom. Lett. 3(2), 620–626 (2018)

    Article  Google Scholar 

  17. Bangura, M., Mahony, R.: Thrust control for multirotor aerial vehicles. IEEE Trans. Robot. 33(2), 390–405 (2017)

    Article  Google Scholar 

  18. Franchi, A., Mallet, A.: Adaptive closed-loop speed control of BLDC motors with applications to multi-rotor aerial vehicles. In: 2017 IEEE International Conference on Robotics and Automation, pp. 5203–5208, Singapore, May (2017)

    Google Scholar 

  19. Ahmad, N., Ghazilla, R.A.R., Khairi, N.M., Kasi, V.: Reviews on various inertial measurement unit (IMU) sensor applications. Int. J. Signal Process. Syst. 1(2), 256–262 (2013)

    Article  Google Scholar 

  20. Martin, P., Salaün, E.: The true role of accelerometer feedback in quadrotor control. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1623–1629, Anchorage, AK, May (2010)

    Google Scholar 

  21. Leishman, R.C., Macdonald, J.C., Beard, R.W., McLain, T.W.: Quadrotors and accelerometers: state estimation with an improved dynamic model. IEEE Control Syst. 34(1), 28–41 (2014)

    Article  MathSciNet  Google Scholar 

  22. Mahony, R., Hamel, T., Pflimlin, J.-M.: Nonlinear complementary filters on the special orthogonal group. IEEE Trans. Autom. Control 53(5), 1203–1218 (2008)

    Article  MathSciNet  Google Scholar 

  23. Kraft, E.: A quaternion-based unscented kalman filter for orientation tracking. In: Proceedings of the Sixth International Conference of Information Fusion, vol. 1, pp. 47–54 (2003)

    Google Scholar 

  24. Scandaroli, G.G., Morin, P., Silveira, G.: A nonlinear observer approach for concurrent estimation of pose, IMU bias and camera-to-IMU rotation. In: 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3335–3341 (2011)

    Google Scholar 

  25. Scandaroli, G.G., Morin, P.: Nonlinear filter design for pose and IMU bias estimation. In: 2011 IEEE International Conference on Robotics and Automation (ICRA), pp. 4524–4530 (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Tognon .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tognon, M., Franchi, A. (2021). Model of the Robotic Elements. In: Theory and Applications for Control of Aerial Robots in Physical Interaction Through Tethers. Springer Tracts in Advanced Robotics, vol 140. Springer, Cham. https://doi.org/10.1007/978-3-030-48659-4_3

Download citation

Publish with us

Policies and ethics