Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 206 Accesses

Abstract

We investigate sharp disruptions of local turbulence and scalar transport due to the arrival of SBFs. To this end, we employ a comprehensive 10-yr observational database from the CESAR site. SB days are selected from the mesoscale selection algorithm, that accounts for large-scale conditions and a clear frontal signal associated with the land-sea contrast.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Arrillaga JA, Vilà-Guerau de Arellano J, Bosveld F, Baltink HK, Yagüe C, Sastre M, Román-Cascón C (2018) Impacts of afternoon and evening sea-breeze fronts on local turbulence, and on CO\(_2\) and radon-222 transport. Q J R Meteorol Soc 144:990–1011. https://doi.org/10.1002/qj.3252

  2. Borne K, Chen D, Nunez M (1998) A method for finding sea breeze days under stable synoptic conditions and its application to the Swedish west coast. Int J Climatol 18:901–914. https://doi.org/10.1002/(SICI)1097-0088(19980630)18:8<901::AID-JOC295>3.0.CO;2-F

  3. Jiménez PA, de Arellano, JV-G, Dudhia J, Bosveld FC (2016b) Role of synoptic- and meso-scales on the evolution of the boundary-layer wind profile over a coastal region: the near-coast diurnal acceleration. Meteorol Atmos Phys 128:39–56. https://doi.org/10.1007/s00703-015-0400-6

  4. Bosveld F (2017) Dataset-description document of the datasets in the Cesar database, Technical report, KNMI. http://projects.knmi.nl/cabauw/insitu/observations/documentation/Cabauw_TR/Cabauw_TR.pdf

  5. Chapin F, Matson P, Vitousek P (2011) Principles of terrestrial ecosystem ecology. Springer

    Google Scholar 

  6. de Haij M, Wauben W, Klein Baltink H (2007) Continuous mixing layer height determination using the LD-40 ceilometer: a feasibility study. De Bilt, Royal Netherlands Meteorological Institute (KNMI)

    Google Scholar 

  7. Sluijter R, Instituut KNM, Leenaers H, Camarasa M, Atlasproducties N (2011) De Bosatlas van het klimaat, De Bosatlas, Noordhoff Uitgevers. https://books.google.es/books?id=zACIpwAACAAJ

  8. Atkins NT, Wakimoto RM (1997) Influence of the synoptic-scale flow on sea breezes observed during CaPE. Mon Wea Rev 125:2112–2130. https://doi.org/10.1175/1520-0493(1997)125<2112:IOTSSF>2.0.CO;2

  9. Crosman ET, Horel JD (2010) Sea and lake breezes: a review of numerical studies. Boundary-Layer Meteorol. 137:1–29. https://doi.org/10.1007/s10546-010-9517-9

  10. Miller STK, Keim BD, Talbot RW, Mao H (2003) Sea breeze: structure, forecasting, and impacts. Rev Geophys 41, n/a–n/a, 1011. https://doi.org/10.1029/2003RG000124

  11. Beljaars ACM, Bosveld FC (1997) Cabauw data for the validation of land surface parameterization schemes. J Clim 10:1172–1193. https://doi.org/10.1175/1520-0442(1997)010<1172:CDFTVO>2.0.CO;2

  12. Verkaik JW, Holtslag AAM (2007) Wind profiles, momentum fluxes and roughness lengths at Cabauw revisited. Boundary-Layer Meteorol 122:701–719. https://doi.org/10.1007/s10546-006-9121-1

  13. Stull R (1988) An introduction to boundary layer meteorology. Atmospheric and oceanographic sciences library, Springer, Netherlands

    Google Scholar 

  14. Steeneveld GJ, Holtslag AAM, Debruin HAR (2005) Fluxes and gradients in the convective surface layer and the possible role of boundary-layer depth and entrainment flux. Boundary-Layer Meteorol 116:237–252. https://doi.org/10.1007/s10546-004-2730-7

  15. Antonelli M, Rotunno R (2007) Large-Eddy simulation of the onset of the sea breeze. J Atmos Sci 64:4445–4457. https://doi.org/10.1175/2007JAS2261.1

  16. Comin AN, Miglietta MM, Rizza U, Acevedo OC, Degrazia GA (2015) Investigation of sea-breeze convergence in Salento Peninsula (southeastern Italy). Atmos Res 160:68–79. https://doi.org/10.1016/j.atmosres.2015.03.010

  17. Sun H, Clark TL, Stull RB, Black TA (2006) Two-dimensional simulation of airflow and carbon dioxide transport over a forested mountain: Part II. Carbon dioxide budget analysis and advection effects. Agric For Meteorol 140:352–364. https://doi.org/10.1016/j.agrformet.2006.03.016

  18. Sastre M, Yagüe C, Román-Cascón C, Maqueda G (2015) Atmospheric boundary-layer evening transitions: a comparison between two different experimental sites. Boundary-Layer Meteorol 157:375–399

    Google Scholar 

  19. Lampert A, Pätzold F, Jiménez MA, Lobitz L, Martin S, Lohmann G, Canut G, Legain D, Bange J, Martínez-Villagrasa D, Cuxart J (2016) A study of local turbulence and anisotropy during the afternoon and evening transition with an unmanned aerial system and mesoscale simulation. Atmos Chem Phys 16:8009–8021. https://doi.org/10.5194/acp-16-8009-2016

  20. Holtslag AAM, Bruin HARD (1988) Applied modeling of the nighttime surface energy balance over land. J Appl Meteorol 27:689–704. https://doi.org/10.1175/1520-0450(1988)027<0689:AMOTNS>2.0.CO;2

  21. van Hooijdonk IGS, Donda JMM, Clercx HJH, Bosveld FC, van de Wiel BJH (2015) Shear capacity as prognostic for nocturnal boundary layer regimes. J Atmos Sci 72:1518–1532. https://doi.org/10.1175/JAS-D-14-0140.1

  22. Deardorff JW (1972) Numerical investigation of neutral and unstable planetary boundary layers. J Atmos Sci 29:91–115. https://doi.org/10.1175/1520-0469(1972)029<0091:NIONAU>2.0.CO;2

  23. Moeng C-H, Sullivan PP (1994) A comparison of shear- and buoyancy-driven planetary boundary layer flows. J Atmos Sci 51:999–1022. https://doi.org/10.1175/1520-0469(1994)051<0999:ACOSAB>2.0.CO;2

  24. Calmet I, Mestayer P (2016) Study of the thermal internal boundary layer during sea-breeze events in the complex coastal area of Marseille. Theor Appl Climatol 123:801–826. https://doi.org/10.1007/s00704-015-1394-1

  25. Wyngaard J (2010) Turbulence in the atmosphere. Cambridge University Press

    Google Scholar 

  26. Lenschow DH, Wyngaard JC, Pennell WT (1980) Mean-field and second-moment budgets in a baroclinic, convective boundary layer. J Atmos Sci 37:1313–1326. https://doi.org/10.1175/1520-0469(1980)037<1313:MFASMB>2.0.CO;2

  27. Super I, van der Gon HD, Visschedijk A, Moerman M, Chen H, van der Molen M, Peters W (2017) Interpreting continuous in-situ observations of carbon dioxide and carbon monoxide in the urban port area of Rotterdam. Atmos Pollut Res 8:174–187. https://doi.org/10.1016/j.apr.2016.08.008

  28. Casso-Torralba P, Vilà-Guerau de Arellano J, Bosveld F, Soler MR, Vermeulen A, Werner C, Moors E (2008) Diurnal and vertical variability of the sensible heat and carbon dioxide budgets in the atmospheric surface layer. J Geophys Res Atmos. 113, n/a–n/a, d12119. https://doi.org/10.1029/2007JD009583

  29. Zahorowski W, Williams AG, Vermeulen AT, Chambers SD, Crawford J, Sisoutham O (2008) Diurnal boundary layer mixing patterns characterised by radon-222 gradient observations at Cabauw. In: Extended abstracts, 18th conference on boundary layers and turbulence, Stockholm, Sweden, American Meteorological Society

    Google Scholar 

  30. van der Laan S, Manohar S, Vermeulen A, Bosveld F, Meijer H, Manning A, van der Molen M, van der Laan-Luijkx I (2016) Inferring \(^{222}\)Rn soil fluxes from ambient \(^{222}\)Rn activity and eddy covariance measurements of CO\(_{2}\). Atmos Meas Tech 9:5523–5533. https://doi.org/10.5194/amt-9-5523-2016

  31. Ho EC, Measday DF (2005) A simple model for describing the concentration of 212Pb in the atmosphere. J Environ Radioact 78:289–309. https://doi.org/10.1016/j.jenvrad.2004.05.008

  32. Vargas A, Arnold D, Adame J, Grossi C, Hernández-Ceballos M, Bolivar J (2015) Analysis of the vertical radon structure at the Spanish “El Arenosillo” tower station. J Environ Radioact 139:1 – 17. https://doi.org/10.1016/j.jenvrad.2014.09.018

  33. Arnold D, Vargas A, Ortega X (2009) Analysis of outdoor radon progeny concentration measured at the Spanish radioactive aerosol automatic monitoring network. Appl Radiat Isot 67:833– 838. https://doi.org/10.1016/j.apradiso.2009.01.042. 5th International conference on radionuclide metrology-low-level radioactivity measurement techniques ICRM-LLRMT’08

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jon Ander Arrillaga Mitxelena .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Arrillaga Mitxelena, J.A. (2020). Impacts of Sea-Breeze Fronts on Local Turbulence and Scalar Transport. In: Thermally-driven Mesoscale Flows and their Interaction with Atmospheric Boundary Layer Turbulence. Springer Theses. Springer, Cham. https://doi.org/10.1007/978-3-030-48579-5_4

Download citation

Publish with us

Policies and ethics